madlib-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From iyerr3 <...@git.apache.org>
Subject [GitHub] incubator-madlib pull request #54: Pivoting: Phase 2
Date Fri, 29 Jul 2016 20:44:21 GMT
Github user iyerr3 commented on a diff in the pull request:

    https://github.com/apache/incubator-madlib/pull/54#discussion_r72857563
  
    --- Diff: src/ports/postgres/modules/utilities/pivot.py_in ---
    @@ -58,66 +61,256 @@ def pivot(schema_madlib, source_table, out_table,
                                     pivoted table
             @param aggregate_func   The aggregate function to be applied to the
                                     values
    +        @param fill_value       If specified, determines how to fill NULL
    +                                values resulting from pivot operation
    +        @param keep_null        The flag for determining how to handle NULL
    +                                values in pivot columns
         """
    -
         """
         Assume we have the following table
             pivset( id INTEGER, piv FLOAT8, val FLOAT8 )
    -    where the piv column has 3 distinct values (10.0, 20.0 and 30.0).
    +    where the piv column has 3 distinct values (10, 20 and 30).
         If the pivot function call is :
             SELECT madlib.pivot('pivset', 'pivout', 'id', 'piv', 'val');
         We want to construct the following sql code to pivot the table.
             CREATE TABLE pivout AS (SELECT id,
    -        sum(CASE WHEN "piv" = '10.0' THEN val ELSE NULL END ) as "piv_10.0",
    -        sum(CASE WHEN "piv" = '20.0' THEN val ELSE NULL END ) as "piv_20.0",
    -        sum(CASE WHEN "piv" = '30.0' THEN val ELSE NULL END ) as "piv_30.0"
    +        avg(CASE WHEN "piv" = '10' THEN val ELSE NULL END ) as "val_avg_piv_10",
    +        avg(CASE WHEN "piv" = '20' THEN val ELSE NULL END ) as "val_avg_piv_20",
    +        avg(CASE WHEN "piv" = '30' THEN val ELSE NULL END ) as "val_avg_piv_30"
             FROM pivset GROUP BY id ORDER BY id)
     
         """
    +
    +    # If there are more than 1000 columns for the output table, we give a
    +    # warning as it might give an error.
    +    MAX_OUTPUT_COLUMN_COUNT = 1000
    +
    +    # If a column name has more than 63 characters it gets trimmed automaticly,
    +    # which may cause an exception. We enable the output dictionary in this case
    +    MAX_COLUMN_LENGTH = 63
    +
         indices = split_quoted_delimited_str(index)
    -    pcol = split_quoted_delimited_str(pivot_cols)
    -    pval = split_quoted_delimited_str(pivot_values)
    -    validate_pivot_coding(source_table, out_table, indices, pcol, pval)
    -    new_col_names =[]
    -    sql_list = ["CREATE TABLE " + out_table + " AS (SELECT " + index]
    +    pcols = split_quoted_delimited_str(pivot_cols)
    +    pvals = split_quoted_delimited_str(pivot_values)
    +    validate_pivot_coding(source_table, out_table, indices, pcols, pvals)
    +
    +    # Strip end quotes from pivot columns
    +    pcols = [strip_end_quotes(pcol.strip()) for pcol in pcols]
    +    pvals = [strip_end_quotes(pval.strip()) for pval in pvals]
    +
    +    # Parse the aggregate_func as a dictionary
    +    try:
    +        param_types = dict.fromkeys(pvals, list)
    +        agg_dict = extract_keyvalue_params(aggregate_func,param_types)
    +    except KeyError, e:
    +        with MinWarning("warning"):
    +            plpy.warning("Pivot: Not all columns from '{aggregate_func}'"
    +            " present in '{pivot_values}'".format(**locals()))
    +            raise
    +
    +    # If the dictionary is empty, parse it as a list
    +    agg_set = split_quoted_delimited_str(aggregate_func) if not agg_dict else []
     
    -    pcol_no_quotes = strip_end_quotes(pcol[0].strip())
    -    pval_no_quotes = strip_end_quotes(pval[0].strip())
    +    # __madlib_pivot_def_agg__ denotes the aggregate function(s) if the user
    +    # does not specify a value: aggregate dictionary
    +    # If no aggregates are given, set average as default
    +    agg_dict['__madlib_pivot_def_agg__'] = ['avg'] if not agg_set else agg_set
     
         # Find the distinct values of pivot_cols
    -    distinct_values = plpy.execute(
    -        "SELECT array_agg(DISTINCT {pcol} ORDER BY {pcol}) AS value "
    -        "FROM {source_table}".
    -        format(pcol=pcol[0], source_table=source_table))
    -
    -    distinct_values = [strip_end_quotes(item)
    -                        for item in distinct_values[0]['value']]
    -    # The aggregate collects pivot_values values for a given pivot_cols value
    -    case_str = ("{agg}("
    -                "CASE WHEN \"{{pcol}}\" = '{{value}}' THEN {pval} ELSE NULL END"
    -                ")".
    -                format(agg=aggregate_func,
    -                       pval=pval_no_quotes))
    -    sql_list.append(
    -        ", " +
    -        # Assign the name of the new column
    -        ', '.join("{case_str} as \"{{pcol}}_{{value}}\"".
    -                  format(case_str=case_str).
    -                  format(pcol=pcol_no_quotes, value=str(value))
    -                  for value in distinct_values if value is not None))
    +    # Note that the distinct values are appended in order of users list
    +    # This ordering is important when we access pivot_comb entries
    +    array_agg_str = ', '.join("array_agg(DISTINCT {pcol}) AS {pcol}_values".
    +        format(pcol=pcol) for pcol in pcols)
    +
    +    null_str = ""
    +    if keep_null:
    +        # Create an additional column for every pivot column
    +        # If there is a null value, this column will get True
    +        null_str = ","+', '.join(
    +            "bool_or(CASE WHEN {pcol} IS NULL THEN True END)"
    +            "AS {pcol}_isnull".format(pcol=pcol) for pcol in pcols)
    +
    +    distinct_values = plpy.execute("SELECT {0} {1} FROM {2}".
    +        format(array_agg_str, null_str, source_table))
    +
    +    # Collect the distinct values for every pivot column
    +    pcol_distinct_values = {}
    +    pcol_max_length = 0
    +    for pcol in pcols:
    +        # Read the distinct values for this pcol
    +        pcol_tmp = [item for item in distinct_values[0][pcol+"_values"]]
    +        # Remove null values if keep null is not true
    +        if not keep_null:
    +            pcol_tmp = [x for x in pcol_tmp if x is not None]
    +        elif distinct_values[0][pcol+"_isnull"] and None not in pcol_tmp:
    +            pcol_tmp.append(None)
    +
    +        pcol_distinct_values[pcol]=sorted(pcol_tmp)
    +        # Max length of the string that pcol values can create +
    +        # length of pcol + 1 (for _ character)
    +        pcol_max_length+=max([len(str(item)) for item in pcol_tmp])+len(pcol)+1
    +
    +    # Create the combination of every possible pivot column
    +    # Assume piv and piv2 are pivot columns. piv=(1,2) and piv2=(3,4,5)
    +    # pivot_comb = ((1,3),(1,4),(1,5),(2,3),(2,4),(2,5))
    +    pivot_comb = list(itertools.product(*([pcol_distinct_values[pcol]
    +        for pcol in pcols])))
    +    #Prepare the wrapper for fill value
    +    fill_str_begin = ""
    +    fill_str_end = ""
    +    if fill_value is not None:
    +        fill_str_begin = " COALESCE("
    +        fill_str_end = ", "+fill_value+" ) "
    +
    +    # Check the max possible length of a output column name
    +    # If it is over 63 (psql upper limit) create table lookup
    +    for pval in pvals:
    +
    +        col_name_len = pcol_max_length+len(pval)+1
    +        try:
    +            # If user specifies a list of aggregates for a value column
    +            # Every value column has to have an entry
    +            agg_func = agg_dict[pval] if len(agg_dict) > 1 else \
    --- End diff --
    
    To understand the behavior: if a user does not specify the `aggregate_func` parameter
then we use a default. If this is a list then we apply that for all values. But it's not possible
to say: use default for `val1` and use `val2=[a, b, c]`?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

Mime
View raw message