tvm-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [incubator-tvm] zhiics commented on a change in pull request #5272: [BYOC] Add example of Composite + Annotate for DNNL fused op
Date Thu, 09 Apr 2020 18:44:02 GMT
zhiics commented on a change in pull request #5272: [BYOC] Add example of Composite + Annotate
for DNNL fused op
URL: https://github.com/apache/incubator-tvm/pull/5272#discussion_r406404843
 
 

 ##########
 File path: tests/python/relay/test_pass_partition_graph.py
 ##########
 @@ -856,6 +857,111 @@ def expected():
     partitioned = transform.PartitionGraph()(mod)
     assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True)
 
+
+def test_partition_conv_bias_relu():
+    def make_pattern():
+        data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
+        weight = relay.var("weight")
+        bias = relay.var("bias")
+        conv = relay.nn.conv2d(data=data, weight=weight, kernel_size=(3, 3),
+                               channels=8, padding=(1, 1))
+        add = relay.add(conv, bias)
+        return relay.nn.relu(add)
+
+    def get_blocks(prefix, data, in_channel, out_channel,
+                   include_bn=True, include_sigmoid=False):
+        weight = relay.var(prefix + "weight")
+        bn_gamma = relay.var(prefix + "bn_gamma")
+        bn_beta = relay.var(prefix + "bn_beta")
+        bn_mmean = relay.var(prefix + "bn_mean")
+        bn_mvar = relay.var(prefix + "bn_var")
+
+        layer = relay.nn.conv2d(data=data, weight=weight, kernel_size=(3, 3),
+                                channels=out_channel, padding=(1, 1))
+        if include_bn:
+            bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta,
+                                            bn_mmean, bn_mvar)
+            layer = bn_output[0]
+        if include_sigmoid:
+            # dummy layer to prevent pattern detection
+            layer = relay.sigmoid(layer)
+        layer = relay.nn.relu(layer)
+        return layer
+
+    def get_net(include_bn=True, include_sigmoid=False):
+        data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
+        layer1 = get_blocks("layer1_", data, 3, 8, include_bn, include_sigmoid)
+        layer2 = get_blocks("layer2_", layer1, 8, 8, include_bn, include_sigmoid)
+        return relay.Function(relay.analysis.free_vars(layer2), layer2)
+
+    def get_partitoned_mod(mod, params):
+        # This is required for constant folding
+        mod["main"] = bind_params_by_name(mod["main"], params)
+        pattern_table = [
+            ("dnnl.conv_bias_relu", make_pattern())
+        ]
+        remove_bn_pass = transform.Sequential([
+            transform.InferType(),
+            transform.SimplifyInference(),
+            transform.FoldConstant(),
+            transform.FoldScaleAxis(),
+        ])
+        composite_partition = transform.Sequential([
+            remove_bn_pass,
+            transform.MergeComposite(pattern_table),
+            transform.AnnotateTarget("dnnl"),
 
 Review comment:
   Looks like that is caused by wrongly adding the `default` compiler annotations. Let's work
on reviewing #5277 and merge these bunch of fixes. 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services

Mime
View raw message