systemml-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Matthias Boehm (JIRA)" <>
Subject [jira] [Closed] (SYSTEMML-1752) Cache-conscious mmchain matrix multiply for wide matrices
Date Sun, 09 Jul 2017 06:26:00 GMT


Matthias Boehm closed SYSTEMML-1752.

> Cache-conscious mmchain matrix multiply for wide matrices
> ---------------------------------------------------------
>                 Key: SYSTEMML-1752
>                 URL:
>             Project: SystemML
>          Issue Type: Task
>            Reporter: Matthias Boehm
>            Assignee: Matthias Boehm
>             Fix For: SystemML 1.0
> The fused mmchain matrix multiply for patterns such as {{t(X) %*% (w * (X %*% v))}} uses
row-wise {{dotProduct}} and {{vectMultAdd}} operations, which works very well for the common
case of tall&skinny matrices where individual rows fit into L1 cache. However, for graph
and text scenarios with wide matrices this leads to cache trashing on the input and output
> This task aims to generalize these dense and sparse operations to perform the computation
in a cache-conscious manner when necessary, by accessing fragments of the input and output
vector for groups of rows. For dense this is trivial to realize while for sparse it requires
a careful determination of the block sizes according to the input sparsity. 

This message was sent by Atlassian JIRA

View raw message