systemml-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Matthias Boehm <mboe...@googlemail.com>
Subject Re: Proposal to add 'accuracy test suite' before 1.0 release
Date Fri, 17 Feb 2017 19:53:48 GMT
Yes, this has been discussed a couple of times now, most recently in 
SYSTEMML-546. It takes quite some effort though to create a 
sophisticated algorithm-level test suite as done for GLM. So by all 
means, please, go ahead and add these tests.

However, I would not impose any constraints on the contribution of new 
algorithms in that regard, or similarly on tests with simplified 
algorithms because it would raise the bar to high.

Regards,
Matthias


On 2/17/2017 10:48 AM, Niketan Pansare wrote:
>
>
> Hi all,
>
> We currently test the correctness of individual runtime operators using our
> integration tests but not the "released" algorithms. To be fair, we do test
> a subset of "simplified" algorithms on synthetic datasets and compare the
> accuracy with R. Also, we are testing subset of released algorithms using
> our Python tests, but it's intended purpose is to only test the integration
> of the APIs:
> Simplified algorithms:
> https://github.com/apache/incubator-systemml/tree/master/src/test/scripts/applications
> Released algorithms:
> https://github.com/apache/incubator-systemml/tree/master/scripts/algorithms
> Python tests:
> https://github.com/apache/incubator-systemml/tree/master/src/main/python/tests
>
> Though the released algorithm is tested when it is initially introduced,
> other artifacts (spark versions, API changes, engine improvements, etc)
> could cause them to return incorrect results over a period of time.
> Therefore, similar to our performance test suite (
> https://github.com/apache/incubator-systemml/tree/master/scripts/perftest),
> I propose we create another test suite ("accuracy test suite" for lack of a
> better term) that compares the accuracy (or some other metric) of our
> released algorithms on standard datasets. Making it a requirement to add
> tests to accuracy test suite when adding the new algorithm will greatly
> improve the production-readiness of SystemML as well as serve as a usage
> guide too. This implies we run both the performance as well as accuracy
> test suite before our release. Alternative is to replace simplified
> algorithms with our released algorithms.
>
> Advantages of accuracy test suite approach:
> 1. No increase the running time of integration tests on Jenkins.
> 2. Accuracy test suite could use much larger datasets.
> 3. Accuracy test suite could include algorithms that take longer to
> converge (for example: Deep Learning algorithms).
>
> Advantage of replacing simplified algorithms:
> 1. No commit breaks any of the existing algorithms.
>
> Thanks,
>
> Niketan Pansare
> IBM Almaden Research Center
> E-mail: npansar At us.ibm.com
> http://researcher.watson.ibm.com/researcher/view.php?person=us-npansar
>

Mime
View raw message