Hi,
I am getting some very strange results, where I get different results based
on whether or not I call persist() on a data frame or not before
materialising it.
There's probably something obvious I am missing, as only very simple
operations are involved here. Any help with this would be greatly
appreciated. I have a simple data-frame with IDs and values:
data_dict = {'id': {k: str(k) for k in range(99)}, 'value':
dict(enumerate(['A'] * 4 + ['B'] * 46 + ['C'] * 49))}
df_small = pd.DataFrame(data_dict)
records = sqlContext.createDataFrame(df_small)
records.printSchema()
# root
# |-- id: string (nullable = true)
# |-- value: string (nullable = true)
Now, I left outer join over the IDs -- here, using a dummy constant column
on the right instead of a separate data-frame (enough to reproduce my
issue):
unique_ids = records.select("id").dropDuplicates()
id_names = unique_ids.select(F.col("id").alias("id_join"),
F.lit("xxx").alias("id_name"))
df_joined = records.join(id_names, records['id'] == id_names['id_join'],
"left_outer").drop("id_join")
At this point, *doing a show on df_joined* indicates all is fine: all
records are there as expected, for instance:
df_joined[(df_joined['id'] > 60) & (df_joined['id'] < 70)].show()
+---+-----+-------+
| id|value|id_name|
+---+-----+-------+
| 61| C| xxx|
| 62| C| xxx|
| 63| C| xxx|
| 64| C| xxx|
...
However, if I filter for a given value and then group by ID, I do not get
back all of the groups:
def print_unique_ids(df):
filtered = df[df["value"] == "C"]
plan = filtered.groupBy("id").count().select("id")
unique_ids = list(plan.toPandas()["id"])
print "{0} IDs: {1}\n".format(len(unique_ids), sorted(unique_ids))
print plan.rdd.toDebugString() + "\n"
print_unique_ids(df_joined.unpersist())
print_unique_ids(df_joined.persist())
49 IDs: [u'50', u'51', u'52', u'53', u'54', u'55', u'56', u'57', u'58',
u'59', u'60', u'61', u'62', u'63', u'64', u'65', u'66', u'67', u'68', u'69',
u'70', u'71', u'72', u'73', u'74', u'75', u'76', u'77', u'78', u'79', u'80',
u'81', u'82', u'83', u'84', u'85', u'86', u'87', u'88', u'89', u'90', u'91',
u'92', u'93', u'94', u'95', u'96', u'97', u'98']
46 IDs: [u'50', u'51', u'52', u'53', u'54', u'55', u'56', u'57', u'58',
u'59', u'60', u'61', u'62', u'66', u'67', u'68', u'69', u'70', u'71', u'72',
u'73', u'74', u'75', u'76', u'77', u'78', u'79', u'80', u'81', u'82', u'83',
u'84', u'85', u'86', u'87', u'88', u'89', u'90', u'91', u'92', u'93', u'94',
u'95', u'96', u'97', u'98']
Note how here IDs 43, 44, 45 are missing when persist() has been called. The
output is correct if the data-frame has not been marked for persistance, but
incorrect after the call to persist.
When persist() has been called, Tungsten seems to be involved, but not if
the data-frame has not been persisted. I am including the full outputs of
toDebugString below.
Has anyone any idea what is going on here?
In case this helps: I see no issue if I don't do the dummy join, or if I
don't filter for value == "C". I have a default spark config, besides
"spark.shuffle.consolidateFiles=true", and spark 1.5.1.
Thanks a lot!
- Without persist:
(200) MapPartitionsRDD[26] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[25] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsWithPreparationRDD[22] at toPandas at
<ipython-input-2-xxx>:25 []
| MapPartitionsWithPreparationRDD[21] at toPandas at
<ipython-input-2-xxx>:25 []
| MapPartitionsRDD[20] at toPandas at <ipython-input-2-xxx>:25 []
| ZippedPartitionsRDD2[19] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsWithPreparationRDD[9] at toPandas at
<ipython-input-2-xxx>:25 []
| ShuffledRowRDD[8] at toPandas at <ipython-input-2-xxx>:25 []
+-(2) MapPartitionsRDD[7] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsRDD[6] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsRDD[5] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
| MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147 []
| PythonRDD[1] at RDD at PythonRDD.scala:43 []
| ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423 []
| MapPartitionsWithPreparationRDD[18] at toPandas at
<ipython-input-2-xxx>:25 []
| ShuffledRowRDD[17] at toPandas at <ipython-input-2-xxx>:25 []
+-(200) MapPartitionsRDD[16] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsRDD[15] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsWithPreparationRDD[14] at toPandas at
<ipython-input-2-xxx>:25 []
| ShuffledRowRDD[13] at toPandas at <ipython-input-2-xxx>:25 []
+-(2) MapPartitionsRDD[12] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsWithPreparationRDD[11] at toPandas at
<ipython-input-2-xxx>:25 []
| MapPartitionsRDD[10] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
| MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147 []
| PythonRDD[1] at RDD at PythonRDD.scala:43 []
| ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423
[]
- With persist:
(200) MapPartitionsRDD[52] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[51] at javaToPython at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsWithPreparationRDD[48] at toPandas at
<ipython-input-2-xxx>:25 []
| ShuffledRowRDD[47] at toPandas at <ipython-input-2-xxx>:25 []
+-(200) MapPartitionsRDD[46] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsWithPreparationRDD[45] at toPandas at
<ipython-input-2-xxx>:25 []
| MapPartitionsRDD[44] at toPandas at <ipython-input-2-xxx>:25 []
| MapPartitionsRDD[43] at toPandas at <ipython-input-2-xxx>:25 []
| TungstenProject [id#0,value#1,id_name#3]
SortMergeOuterJoin [id#0], [id_join#2], LeftOuter, None
TungstenSort [id#0 ASC], false, 0
TungstenExchange hashpartitioning(id#0)
ConvertToUnsafe
Scan PhysicalRDD[id#0,value#1]
TungstenSort [id_join#2 ASC], false, 0
TungstenExchange hashpartitioning(id_join#2)
TungstenProject [id#0 AS id_join#2,xxx AS id_name#3]
TungstenAggregate(key=[id#0], functions=[], output=[id#0])
TungstenExchange hashpartitioning(id#0)
TungstenAggregate(key=[id#0], functions=[], output=[id#0])
TungstenProject [id#0]
Scan PhysicalRDD[id#0,value#1]
MapPartitionsRDD[42] at persist at NativeMethodAccessorImpl.java:-2 []
| CachedPartitions: 200; MemorySize: 54.0 KB;
ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
| MapPartitionsRDD[41] at persist at
NativeMethodAccessorImpl.java:-2 []
| ZippedPartitionsRDD2[40] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsWithPreparationRDD[30] at persist at
NativeMethodAccessorImpl.java:-2 []
| ShuffledRowRDD[29] at persist at NativeMethodAccessorImpl.java:-2
[]
+-(2) MapPartitionsRDD[28] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[27] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
| MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147 []
| PythonRDD[1] at RDD at PythonRDD.scala:43 []
| ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423
[]
| MapPartitionsWithPreparationRDD[39] at persist at
NativeMethodAccessorImpl.java:-2 []
| ShuffledRowRDD[38] at persist at NativeMethodAccessorImpl.java:-2
[]
+-(200) MapPartitionsRDD[37] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[36] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsWithPreparationRDD[35] at persist at
NativeMethodAccessorImpl.java:-2 []
| ShuffledRowRDD[34] at persist at
NativeMethodAccessorImpl.java:-2 []
+-(2) MapPartitionsRDD[33] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsWithPreparationRDD[32] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[31] at persist at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[4] at applySchemaToPythonRDD at
NativeMethodAccessorImpl.java:-2 []
| MapPartitionsRDD[3] at map at SerDeUtil.scala:100 []
| MapPartitionsRDD[2] at mapPartitions at SerDeUtil.scala:147
[]
| PythonRDD[1] at RDD at PythonRDD.scala:43 []
| ParallelCollectionRDD[0] at parallelize at
PythonRDD.scala:423 []
--
View this message in context: http://apache-spark-user-list.1001560.n3.nabble.com/pyspark-results-differ-based-on-whether-persist-has-been-called-tp25121.html
Sent from the Apache Spark User List mailing list archive at Nabble.com.
---------------------------------------------------------------------
To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
For additional commands, e-mail: user-help@spark.apache.org
|