spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Zhan Zhang <zzh...@hortonworks.com>
Subject Re: Support for ORC Table in Shark/Spark
Date Thu, 14 Aug 2014 17:16:59 GMT
I tried with simple spark-hive select and insert, and it works. But to directly manipulate
the ORCFile through RDD, spark has to be upgraded to support hive-0.13 first. Because some
ORC API is not exposed until Hive-0.12.

Thanks.

Zhan Zhang


On Aug 11, 2014, at 10:23 PM, vinay.kashyap@socialinfra.net wrote:

> Hi all,
> 
> Is it possible to use table with ORC format in Shark version 0.9.1 with Spark 0.9.2 and
Hive version 0.12.0..??
> 
> I have tried creating the ORC table in Shark using the below query
> 
> create table orc_table (x int, y string) stored as orc
> 
> create table works, but when I try to insert values from a text table containing 2 rows
> 
> insert into table orc_table select * from text_table;
> 
> I get the below exception
> 
> org.apache.spark.SparkException: Job aborted: Task 3.0:1 failed 4 times (most recent
failure: Exception failure: org.apache.hadoop.hive.ql.metadata.HiveException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.hdfs.protocol.AlreadyBeingCreatedException):
Failed to create file [/tmp/hive-windfarm/hive_2014-08-08_10-11-21_691_1945292644101251597/_task_tmp.-ext-10000/_tmp.000001_0]
for [DFSClient_attempt_201408081011_0000_m_000001_0_-341065575_80] on client [<machine_ip>],
because this file is already being created by [DFSClient_attempt_201408081011_0000_m_000001_0_82854889_71]
on [192.168.22.40]
>         at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.recoverLeaseInternal(FSNamesystem.java:2548)
>         at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInternal(FSNamesystem.java:2306)
>         at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFileInt(FSNamesystem.java:2235)
>         at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.startFile(FSNamesystem.java:2188)
>         at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.create(NameNodeRpcServer.java:505)
>         at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.create(ClientNamenodeProtocolServerSideTranslatorPB.java:354)
>         at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
>         at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:585)
>         at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:1026)
>         at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1986)
>         at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:1982)
>         at java.security.AccessController.doPrivileged(Native Method)
>         at javax.security.auth.Subject.doAs(Subject.java:415)
>         at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1554)
>         at org.apache.hadoop.ipc.Server$Handler.run(Server.java:1980)
> )
>         at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028)
>         at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026)
>         at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>         at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026)
>         at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
>         at org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619)
>         at scala.Option.foreach(Option.scala:236)
>         at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619)
>         at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207)
>         at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
>         at akka.actor.ActorCell.invoke(ActorCell.scala:456)
>         at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
>         at akka.dispatch.Mailbox.run(Mailbox.scala:219)
>         at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
>         at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>         at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>         at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>         at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
> FAILED: Execution Error, return code -101 from shark.execution.SparkTask
>  
> Any idea how to overcome this..??
>  
>  
>  
> Thanks and regards
> Vinay Kashyap


-- 
CONFIDENTIALITY NOTICE
NOTICE: This message is intended for the use of the individual or entity to 
which it is addressed and may contain information that is confidential, 
privileged and exempt from disclosure under applicable law. If the reader 
of this message is not the intended recipient, you are hereby notified that 
any printing, copying, dissemination, distribution, disclosure or 
forwarding of this communication is strictly prohibited. If you have 
received this communication in error, please contact the sender immediately 
and delete it from your system. Thank You.

Mime
View raw message