spark-reviews mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From gatorsmile <...@git.apache.org>
Subject [GitHub] spark pull request #18421: [SPARK-21213][SQL] Support collecting partition-l...
Date Wed, 19 Jul 2017 17:03:33 GMT
Github user gatorsmile commented on a diff in the pull request:

    https://github.com/apache/spark/pull/18421#discussion_r128306842
  
    --- Diff: sql/core/src/main/scala/org/apache/spark/sql/execution/command/AnalyzePartitionCommand.scala
---
    @@ -0,0 +1,149 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.command
    +
    +import org.apache.spark.sql.{AnalysisException, Column, Row, SparkSession}
    +import org.apache.spark.sql.catalyst.TableIdentifier
    +import org.apache.spark.sql.catalyst.analysis.{NoSuchPartitionException, UnresolvedAttribute}
    +import org.apache.spark.sql.catalyst.catalog.{CatalogTable, CatalogTableType}
    +import org.apache.spark.sql.catalyst.catalog.CatalogTypes.TablePartitionSpec
    +import org.apache.spark.sql.catalyst.expressions.{And, EqualTo, Literal}
    +
    +/**
    + * Analyzes a given set of partitions to generate per-partition statistics, which will
be used in
    + * query optimizations.
    + *
    + * When `partitionSpec` is empty, statistics for all partitions are collected and stored
in
    + * Metastore.
    + *
    + * When `partitionSpec` mentions only some of the partition columns, all partitions with
    + * matching values for specified columns are processed.
    + *
    + * If `partitionSpec` mentions unknown partition column, an `AnalysisException` is raised.
    + *
    + * By default, total number of rows and total size in bytes is calculated. When `noscan`
    + * is `false`, only total size in bytes is computed.
    + */
    +case class AnalyzePartitionCommand(
    +    tableIdent: TableIdentifier,
    +    partitionSpec: Map[String, Option[String]],
    +    noscan: Boolean = true) extends RunnableCommand {
    +
    +  private def validatePartitionSpec(table: CatalogTable): Option[TablePartitionSpec]
= {
    +    val partitionColumnNames = table.partitionColumnNames.toSet
    +    val invalidColumnNames = partitionSpec.keys.filterNot(partitionColumnNames.contains(_))
    +    if (invalidColumnNames.nonEmpty) {
    +      val tableId = table.identifier
    +      throw new AnalysisException(s"Partition specification for table '${tableId.table}'
" +
    +        s"in database '${tableId.database}' refers to unknown partition column(s): "
+
    +        invalidColumnNames.mkString(","))
    +    }
    +
    +    val filteredSpec = partitionSpec.filter(_._2.isDefined)
    +    if (filteredSpec.isEmpty) {
    +      None
    +    } else {
    +      Some(filteredSpec.mapValues(_.get))
    +    }
    +  }
    +
    +  override def run(sparkSession: SparkSession): Seq[Row] = {
    +    val sessionState = sparkSession.sessionState
    +    val db = tableIdent.database.getOrElse(sessionState.catalog.getCurrentDatabase)
    +    val tableIdentWithDB = TableIdentifier(tableIdent.table, Some(db))
    +    val tableMeta = sessionState.catalog.getTableMetadata(tableIdentWithDB)
    +    if (tableMeta.tableType == CatalogTableType.VIEW) {
    +      throw new AnalysisException("ANALYZE TABLE is not supported on views.")
    +    }
    +
    +    val partitionValueSpec = validatePartitionSpec(tableMeta)
    +
    +    val partitions = sessionState.catalog.listPartitions(tableMeta.identifier, partitionValueSpec)
    +
    +    if (partitions.isEmpty) {
    +      if (partitionValueSpec.isDefined) {
    +        throw new NoSuchPartitionException(db, tableIdent.table, partitionValueSpec.get)
    +      } else {
    +        // the user requested to analyze all partitions for a table which has no partitions
    +        // return normally, since there is nothing to do
    +        return Seq.empty[Row]
    +      }
    +    }
    +
    +    // Compute statistics for individual partitions
    +    val rowCounts: Map[TablePartitionSpec, BigInt] =
    +      if (noscan) {
    +        Map.empty
    +      } else {
    +        calculateRowCountsPerPartition(sparkSession, tableMeta, partitionValueSpec)
    +      }
    +
    +    // Update the metastore if newly computed statistics are different from those
    +    // recorded in the metastore.
    +    val partitionStats = partitions.map { p =>
    +      val newTotalSize = CommandUtils.calculateLocationSize(sessionState,
    +        tableMeta.identifier, p.storage.locationUri)
    --- End diff --
    
    Nit: 
    ```
          val newTotalSize = CommandUtils.calculateLocationSize(
            sessionState, tableMeta.identifier, p.storage.locationUri)
    ```


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscribe@spark.apache.org
For additional commands, e-mail: reviews-help@spark.apache.org


Mime
View raw message