Github user josepablocam commented on a diff in the pull request:
https://github.com/apache/spark/pull/6994#discussion_r34215935
 Diff: mllib/src/main/scala/org/apache/spark/mllib/stat/test/KSTest.scala 
@@ 0,0 +1,191 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.mllib.stat.test
+
+import org.apache.commons.math3.distribution.{NormalDistribution, RealDistribution}
+import org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest
+
+import org.apache.spark.rdd.RDD
+
+/**
+ * Conduct the twosided Kolmogorov Smirnov test for data sampled from a
+ * continuous distribution. By comparing the largest difference between the empirical
cumulative
+ * distribution of the sample data and the theoretical distribution we can provide a
test for the
+ * the null hypothesis that the sample data comes from that theoretical distribution.
+ * For more information on KS Test:
+ * @see [[https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test]]
+ *
+ * Implementation note: We seek to implement the KS test with a minimal number of distributed
+ * passes. We sort the RDD, and then perform the following operations on a perpartition
basis:
+ * calculate an empirical cumulative distribution value for each observation, and a theoretical
+ * cumulative distribution value. We know the latter to be correct, while the former
will be off by
+ * a constant (how large the constant is depends on how many values precede it in other
partitions).
+ * However, given that this constant simply shifts the ECDF upwards, but doesn't change
its shape,
+ * and furthermore, that constant is the same within a given partition, we can pick 2
values
+ * in each partition that can potentially resolve to the largest global distance. Namely,
we
+ * pick the minimum distance and the maximum distance. Additionally, we keep track of
how many
+ * elements are in each partition. Once these three values have been returned for every
partition,
+ * we can collect and operate locally. Locally, we can now adjust each distance by the
appropriate
+ * constant (the cumulative sum of # of elements in the prior partitions divided by the
data set
+ * size). Finally, we take the maximum absolute value, and this is the statistic.
+ */
+private[stat] object KSTest {
+
+ // Null hypothesis for the type of KS test to be included in the result.
+ object NullHypothesis extends Enumeration {
+ type NullHypothesis = Value
+ val oneSampleTwoSided = Value("Sample follows theoretical distribution.")
+ }
+
+ /**
+ * Runs a KS test for 1 set of sample data, comparing it to a theoretical distribution
+ * @param data `RDD[Double]` data on which to run test
+ * @param cdf `Double => Double` function to calculate the theoretical CDF
+ * @return KSTestResult summarizing the test results (pval, statistic, and null hypothesis)
+ */
+ def testOneSample(data: RDD[Double], cdf: Double => Double): KSTestResult = {
+ val n = data.count().toDouble
+ val localData = data.sortBy(x => x).mapPartitions { part =>
+ val partDiffs = oneSampleDifferences(part, n, cdf) // local distances
+ searchOneSampleCandidates(partDiffs) // candidates: local extrema
+ }.collect()
+ val ksStat = searchOneSampleStatistic(localData, n) // result: global extreme
+ evalOneSampleP(ksStat, n.toLong)
+ }
+
+ /**
+ * Runs a KS test for 1 set of sample data, comparing it to a theoretical distribution
+ * @param data `RDD[Double]` data on which to run test
+ * @param createDist `Unit => RealDistribution` function to create a theoretical
distribution
+ * @return KSTestResult summarizing the test results (pval, statistic, and null hypothesis)
+ */
+ def testOneSample(data: RDD[Double], createDist: () => RealDistribution): KSTestResult
= {
+ val n = data.count().toDouble
+ val localData = data.sortBy(x => x).mapPartitions { part =>
+ val partDiffs = oneSampleDifferences(part, n, createDist) // local distances
+ searchOneSampleCandidates(partDiffs) // candidates: local extrema
+ }.collect()
+ val ksStat = searchOneSampleStatistic(localData, n) // result: global extreme
+ evalOneSampleP(ksStat, n.toLong)
+ }
+
+ /**
+ * Calculate unadjusted distances between the empirical CDF and the theoretical CDF
in a
+ * partition
+ * @param partData `Iterator[Double]` 1 partition of a sorted RDD
+ * @param n `Double` the total size of the RDD
+ * @param cdf `Double => Double` a function the calculates the theoretical CDF of
a value
+ * @return `Iterator[(Double, Double)] `Unadjusted (ie. off by a constant) potential
extrema
+ * in a partition. The first element corresponds to the (ECDF  1/N)  CDF,
the second
+ * element corresponds to ECDF  CDF. We can then search the resulting iterator
+ * for the minimum of the first and the maximum of the second element, and provide
this
+ * as a partition's candidate extrema
+ */
+ private def oneSampleDifferences(partData: Iterator[Double], n: Double, cdf: Double
=> Double)
+ : Iterator[(Double, Double)] = {
+ // zip data with index (within that partition)
+ // calculate local (unadjusted) ECDF and subtract CDF
+ partData.zipWithIndex.map { case (v, ix) =>
+ // dp and dl are later adjusted by constant, when global info is available
+ val dp = (ix + 1) / n
+ val dl = ix / n
+ val cdfVal = cdf(v)
+ (dl  cdfVal, dp  cdfVal)
+ }
+ }
+
+ private def oneSampleDifferences(
+ partData: Iterator[Double],
+ n: Double,
+ createDist: () => RealDistribution)
+ : Iterator[(Double, Double)] = {
+ val dist = createDist()
+ oneSampleDifferences(partData, n, x => dist.cumulativeProbability(x))
+ }
+
+ /**
+ * Search the unadjusted differences in a partition and return the
+ * two extrema (furthest below and furthest above CDF), along with a count of elements
in that
+ * partition
+ * @param partDiffs `Iterator[(Double, Double)]` the unadjusted differences between
ECDF and CDF
+ * in a partition, which come as a tuple of (ECDF  1/N  CDF, ECDF
 CDF)
+ * @return `Iterator[(Double, Double, Double)]` the local extrema and a count of elements
+ */
+ private def searchOneSampleCandidates(partDiffs: Iterator[(Double, Double)])
+ : Iterator[(Double, Double, Double)] = {
+ val initAcc = (Double.MaxValue, Double.MinValue, 0.0)
+ val pResults = partDiffs.foldLeft(initAcc) { case ((pMin, pMax, pCt), (dl, dp)) =>
+ (math.min(pMin, dl), math.max(pMax, dp), pCt + 1)
+ }
+ val results = if (pResults == initAcc) Array[(Double, Double, Double)]() else Array(pResults)
+ results.iterator
+ }
+
+ /**
+ * Find the global maximum distance between ECDF and CDF (i.e. the KS Statistic) after
adjusting
+ * local extrema estimates from individual partitions with the amount of elements in
preceding
+ * partitions
+ * @param localData `Array[(Double, Double, Double)]` A local array containing the
collected
+ * results of `searchOneSampleCandidates` across all partitions
+ * @param n `Double`The size of the RDD
+ * @return The onesample Kolmogorov Smirnov Statistic
+ */
+ private def searchOneSampleStatistic(localData: Array[(Double, Double, Double)], n:
Double)
+ : Double = {
+ val initAcc = (Double.MinValue, 0.0)
+ // adjust differences based on the # of elements preceding it, which should provide
+ // the correct distance between ECDF and CDF
+ val results = localData.foldLeft(initAcc) { case ((prevMax, prevCt), (minCand, maxCand,
ct)) =>
+ val adjConst = prevCt / n
+ val dist1 = math.abs(minCand + adjConst)
+ val dist2 = math.abs(maxCand + adjConst)
+ val maxVal = Array(prevMax, dist1, dist2).max
+ (maxVal, prevCt + ct)
+ }
+ results._1
+ }
+
+ /**
+ * A convenience function that allows running the KS test for 1 set of sample data
against
+ * a named distribution
+ * @param data the sample data that we wish to evaluate
+ * @param distName the name of the theoretical distribution
+ * @param params Variable length parameter for distribution's parameters
+ * @return KSTestResult summarizing the test results (pval, statistic, and null hypothesis)
+ */
+ def testOneSample(data: RDD[Double], distName: String, params: Double*): KSTestResult
= {
+ val distanceCalc =
+ distName match {
+ case "norm" => () => {
+ require(params.length == 2, "Normal distribution requires mean and standard
" +
 End diff 
Added

If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.


To unsubscribe, email: reviewsunsubscribe@spark.apache.org
For additional commands, email: reviewshelp@spark.apache.org
