spark-reviews mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From andrewor14 <...@git.apache.org>
Subject [GitHub] spark pull request: [SPARK-6707] [CORE][MESOS]: Mesos Scheduler sh...
Date Wed, 01 Jul 2015 23:59:45 GMT
Github user andrewor14 commented on a diff in the pull request:

    https://github.com/apache/spark/pull/5563#discussion_r33737137
  
    --- Diff: core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerUtils.scala
---
    @@ -86,10 +88,138 @@ private[mesos] trait MesosSchedulerUtils extends Logging {
       /**
        * Get the amount of resources for the specified type from the resource list
        */
    -  protected def getResource(res: List[Resource], name: String): Double = {
    +  protected def getResource(res: JList[Resource], name: String): Double = {
         for (r <- res if r.getName == name) {
           return r.getScalar.getValue
         }
         0.0
       }
    +
    +  /** Helper method to get the key,value-set pair for a Mesos Attribute protobuf */
    +  def getAttribute(attr: Attribute): (String, Set[String]) =
    +    (attr.getName, attr.getText.getValue.split(',').toSet)
    +
    +  /** Build a Mesos resource protobuf object */
    +  def createResource(resourceName: String, quantity: Double): Protos.Resource = {
    +    Resource.newBuilder()
    +      .setName(resourceName)
    +      .setType(Value.Type.SCALAR)
    +      .setScalar(Value.Scalar.newBuilder().setValue(quantity).build())
    +      .build()
    +  }
    +
    +  /**
    +   * Converts the attributes from the resource offer into a Map of name -> Attribute
Value
    +   * The attribute values are the mesos attribute types and they are
    +   * @param offerAttributes
    +   * @return
    +   */
    +  def toAttributeMap(offerAttributes: JList[Attribute]): Map[String, GeneratedMessage]
=
    +    offerAttributes.map(attr => {
    +      val attrValue = attr.getType match {
    +        case Value.Type.SCALAR => attr.getScalar
    +        case Value.Type.RANGES => attr.getRanges
    +        case Value.Type.SET => attr.getSet
    +        case Value.Type.TEXT => attr.getText
    +      }
    +      (attr.getName, attrValue)
    +    }).toMap
    +
    +  /**
    +   * Match the requirements (if any) to the offer attributes.
    +   * if attribute requirements are not specified - return true
    +   * else if attribute is defined and no values are given, simple attribute presence
is preformed
    +   * else if attribute name and value is specified, subset match is performed on slave
attributes
    +   */
    +  def matchesAttributeRequirements(
    +      slaveOfferConstraints: Map[String, Set[String]],
    +      offerAttributes: Map[String, GeneratedMessage]): Boolean =
    +    slaveOfferConstraints.forall {
    +      // offer has the required attribute and subsumes the required values for that attribute
    +      case (name, requiredValues) =>
    +        offerAttributes.get(name) match {
    +          case None => false
    +          case Some(_) if requiredValues.isEmpty => true // empty value matches presence
    +          case Some(scalarValue: Value.Scalar) =>
    +            // check if provided values is less than equal to the offered values
    +            requiredValues.map(_.toDouble).exists(_ <= scalarValue.getValue)
    +          case Some(rangeValue: Value.Range) =>
    +            val offerRange = rangeValue.getBegin to rangeValue.getEnd
    +            // Check if there is some required value that is between the ranges specified
    +            // Note: We only support the ability to specify discrete values, in the future
    +            // we may expand it to subsume ranges specified with a XX..YY value or something
    +            // similar to that.
    +            requiredValues.map(_.toLong).exists(offerRange.contains(_))
    +          case Some(offeredValue: Value.Set) =>
    +            // check if the specified required values is a subset of offered set
    +            requiredValues.subsetOf(offeredValue.getItemList.toSet)
    +          case Some(textValue: Value.Text) =>
    +            // check if the specified value is equal, if multiple values are specified
    +            // we succeed if any of them match.
    +            requiredValues.contains(textValue.getValue)
    +        }
    +  }
    +
    +  /**
    +   * Parses the attributes constraints provided to spark and build a matching data struct:
    +   *  Map[<attribute-name>, Set[values-to-match]]
    +   *  The constraints are specified as ';' separated key-value pairs where keys and values
    +   *  are separated by ':'. The ':' implies equality (for singular values) and "is one
of" for
    +   *  multiple values (comma separated). For example:
    +   *  {{{
    +   *  parseConstraintString("tachyon:true;zone:us-east-1a,us-east-1b")
    +   *  // would result in
    +   *  <code>
    +   *  Map(
    +   *    "tachyon" -> Set("true"),
    +   *    "zone":   -> Set("us-east-1a", "us-east-1b")
    +   *  )
    +   *  }}}
    +   *
    +   *  Mesos documentation: http://mesos.apache.org/documentation/attributes-resources/
    +   *                       https://github.com/apache/mesos/blob/master/src/common/values.cpp
    +   *                       https://github.com/apache/mesos/blob/master/src/common/attributes.cpp
    +   *
    +   * @param constraintsVal constaints string consisting of ';' separated key-value pairs
(separated
    +   *                       by ':')
    +   * @return  Map of constraints to match resources offers.
    +   */
    +  def parseConstraintString(constraintsVal: String): Map[String, Set[String]] = {
    +    /*
    +      Based on mesos docs:
    +      attributes : attribute ( ";" attribute )*
    +      attribute : labelString ":" ( labelString | "," )+
    +      labelString : [a-zA-Z0-9_/.-]
    +    */
    +    val splitter = Splitter.on(';').trimResults().withKeyValueSeparator(':')
    +    // kv splitter
    +    if (constraintsVal.isEmpty) {
    +      Map()
    +    } else {
    +      try {
    +        Map() ++ mapAsScalaMap(splitter.split(constraintsVal)).map {
    +          case (k, v) =>
    +            if (v == null || v.isEmpty) {
    +              (k, Set[String]())
    +            } else {
    +              (k, v.split(',').toSet)
    +            }
    +        }
    +      } catch {
    +        case e: Throwable =>
    +          throw new IllegalArgumentException(s"Bad constraint string: $constraintsVal",
e)
    +      }
    +    }
    +  }
    +
    +  // These defaults copied from YARN
    +  private val MEMORY_OVERHEAD_FRACTION = 0.10
    +  private val MEMORY_OVERHEAD_MINIMUM = 384
    +
    +  def calculateTotalMemory(sc: SparkContext): Int = {
    --- End diff --
    
    great. The old `MemoryUtils` thing was kind of awkward.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastructure@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscribe@spark.apache.org
For additional commands, e-mail: reviews-help@spark.apache.org


Mime
View raw message