spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Hyukjin Kwon (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-14583) SparkSQL doesn't apply TBLPROPERTIES('serialization.null.format'='') when Hive Table has partitions
Date Tue, 21 May 2019 04:25:18 GMT

     [ https://issues.apache.org/jira/browse/SPARK-14583?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Hyukjin Kwon updated SPARK-14583:
---------------------------------
    Labels: bulk-closed  (was: )

> SparkSQL doesn't apply TBLPROPERTIES('serialization.null.format'='') when Hive Table
has partitions
> ---------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-14583
>                 URL: https://issues.apache.org/jira/browse/SPARK-14583
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core, SQL
>    Affects Versions: 1.5.1
>            Reporter: Stephane Maarek
>            Priority: Major
>              Labels: bulk-closed
>
> it seems that Spark forgets or fails to read the metadata tblproperties after a MSCK
REPAIR is issued from within HIVE
> Here are the steps to reproduce:
> create test_data.csv with the following content:
> {code:none}
> a,2
> ,3
> {code}
> move test_data.csv to hdfs:///spark_testing/part_a=a/part_b=b/
> run the following hive statements:
> {code:sql}
> CREATE SCHEMA IF NOT EXISTS spark_testing;
> DROP TABLE IF EXISTS spark_testing.test_csv;
> CREATE EXTERNAL TABLE `spark_testing.test_csv`(
>   column_1 varchar(10),
>   column_2 int)
> PARTITIONED BY (
>   `part_a` string,
>   `part_b` string)
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ','
> STORED AS TEXTFILE LOCATION '/spark_testing'
> TBLPROPERTIES('serialization.null.format'='');
> MSCK REPAIR TABLE spark_testing.test_csv;
> select * from spark_testing.test_csv;
> OK
> a       2       a       b
> NULL    3       a       b
> {code}
> (you can see the NULL)
> now onto Spark:
> {code:java}
> val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
> sqlContext.sql("select * from spark_testing.test_csv").show()
> +--------+--------+------+------+
> |column_1|column_2|part_a|part_b|
> +--------+--------+------+------+
> |       a|       2|     a|     b|
> |        |       3|     a|     b|
> +--------+--------+------+------+
> {code}
> As you can see, SPARK can't detect the null. 
> I don't know if it affects future versions of SPARK and I can't test it in my company's
environment. Steps are easy to reproduce though so can be tested in other environments. My
hive version is 1.2.1
> Let me know if you have any questions. To me that's a big issue because data isn't read
correctly. 



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message