spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Thomas Graves (JIRA)" <j...@apache.org>
Subject [jira] [Resolved] (SPARK-24413) Executor Blacklisting shouldn't immediately fail the application if dynamic allocation is enabled and no active executors
Date Tue, 29 May 2018 21:37:00 GMT

     [ https://issues.apache.org/jira/browse/SPARK-24413?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Thomas Graves resolved SPARK-24413.
-----------------------------------
    Resolution: Duplicate

> Executor Blacklisting shouldn't immediately fail the application if dynamic allocation
is enabled and no active executors
> -------------------------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-24413
>                 URL: https://issues.apache.org/jira/browse/SPARK-24413
>             Project: Spark
>          Issue Type: Improvement
>          Components: Scheduler
>    Affects Versions: 2.3.0
>            Reporter: Thomas Graves
>            Priority: Major
>
> Currently with executor blacklisting enabled, dynamic allocation on, and you only have
1 active executor (spark.blacklist.killBlacklistedExecutors setting doesn't matter in this
case, can be on or off), if you have a task fail that results in the 1 executor you have
getting blacklisted, then your entire application will fail.  The error you get is something
like:
> Aborting TaskSet 0.0 because task 9 (partition 9)
> cannot run anywhere due to node and executor blacklist.
> This is very undesirable behavior because you may have a huge job but one task is the
long tail and if it happens to hit a bad node that would blacklist it, the entire job fail.
> Ideally since dynamic allocation is on, the schedule should not immediately fail but
it should let dynamic allocation try to get more executors. 
>  



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message