spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Imran Rashid (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-24309) AsyncEventQueue should handle an interrupt from a Listener
Date Thu, 17 May 2018 21:58:00 GMT

     [ https://issues.apache.org/jira/browse/SPARK-24309?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Imran Rashid updated SPARK-24309:
---------------------------------
    Priority: Blocker  (was: Major)

> AsyncEventQueue should handle an interrupt from a Listener
> ----------------------------------------------------------
>
>                 Key: SPARK-24309
>                 URL: https://issues.apache.org/jira/browse/SPARK-24309
>             Project: Spark
>          Issue Type: Bug
>          Components: Scheduler, Spark Core
>    Affects Versions: 2.3.0
>            Reporter: Imran Rashid
>            Priority: Blocker
>
> AsyncEventQueue does not properly handle an interrupt from a Listener -- the spark app
won't even stop!
> I observed this on an actual workload as the EventLoggingListener can generate an interrupt
from the underlying hdfs calls:
> {noformat}
> 18/05/16 17:46:36 WARN hdfs.DFSClient: Error transferring data from DatanodeInfoWithStorage[10.17.206.36:20002,DS-3adac910-5d0a-418b-b0f7-6332b35bf6a1,DISK]
to DatanodeInfoWithStorage[10.17.206.42:20002,DS-2e7ed0aa-0e68-441e-b5b2-96ad4a9ce7a5,DISK]:
100000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected
local=/10.17.206.35:33950 remote=/10.17.206.36:20002]
> 18/05/16 17:46:36 WARN hdfs.DFSClient: DataStreamer Exception
> java.net.SocketTimeoutException: 100000 millis timeout while waiting for channel to be
ready for read. ch : java.nio.channels.SocketChannel[connected local=/10.17.206.35:33950 remote=/10.17.206.36:20002]
>         at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
>         at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
>         at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
>         at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:118)
>         at java.io.FilterInputStream.read(FilterInputStream.java:83)
>         at java.io.FilterInputStream.read(FilterInputStream.java:83)
>         at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:2305)
>         at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer$StreamerStreams.sendTransferBlock(DFSOutputStream.java:516)
>         at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.transfer(DFSOutputStream.java:1450)
>         at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:1408)
>         at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1559)
>         at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:1254)
>         at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:739)
> 18/05/16 17:46:36 ERROR scheduler.AsyncEventQueue: Listener EventLoggingListener threw
an exception
> [... a few more of these ...]
> 18/05/16 17:46:36 INFO scheduler.AsyncEventQueue: Stopping listener queue eventLog.
> java.lang.InterruptedException
>         at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchronizer.java:1220)
>         at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335)
>         at java.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue.java:439)
>         at org.apache.spark.scheduler.AsyncEventQueue$$anonfun$org$apache$spark$scheduler$AsyncEventQueue$$dispatch$1.apply(AsyncEventQueue.scala:94)
>         at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
>         at org.apache.spark.scheduler.AsyncEventQueue.org$apache$spark$scheduler$AsyncEventQueue$$dispatch(AsyncEventQueue.scala:83)
>         at org.apache.spark.scheduler.AsyncEventQueue$$anon$1$$anonfun$run$1.apply$mcV$sp(AsyncEventQueue.scala:79)
>         at org.apache.spark.util.Utils$.tryOrStopSparkContext(Utils.scala:1319)
>         at org.apache.spark.scheduler.AsyncEventQueue$$anon$1.run(AsyncEventQueue.scala:78)
> {noformat}
> When this happens, the AsyncEventQueue will continue to pile up events in its queue,
though its no longer processing them.  And then in the call to stop, it'll block on {{queue.put(POISON_PILL)}}
forever, so the SparkContext won't stop.



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message