spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Apache Spark (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-18805) InternalMapWithStateDStream make java.lang.StackOverflowError
Date Wed, 23 May 2018 14:48:00 GMT

    [ https://issues.apache.org/jira/browse/SPARK-18805?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16487391#comment-16487391
] 

Apache Spark commented on SPARK-18805:
--------------------------------------

User 'chermenin' has created a pull request for this issue:
https://github.com/apache/spark/pull/21412

> InternalMapWithStateDStream make java.lang.StackOverflowError 
> --------------------------------------------------------------
>
>                 Key: SPARK-18805
>                 URL: https://issues.apache.org/jira/browse/SPARK-18805
>             Project: Spark
>          Issue Type: Bug
>          Components: DStreams
>    Affects Versions: 1.6.3, 2.0.2
>         Environment: mesos
>            Reporter: etienne
>            Priority: Major
>
> When load InternalMapWithStateDStream from a check point.
> If isValidTime is true and if there is no generatedRDD at the given time there is an
infinite loop.
> 1) compute is call on InternalMapWithStateDStream
> 2) InternalMapWithStateDStream try to generate the previousRDD
> 3) Stream look in generatedRDD if the RDD is already generated for the given time 
> 4) It not fund the rdd so it check if the time is valid.
> 5) if the time is valid call compute on InternalMapWithStateDStream
> 6) restart from 1)
> Here the exception that illustrate this error
> {code}
> Exception in thread "streaming-start" java.lang.StackOverflowError
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
> 	at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
> 	at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:335)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:333)
> 	at scala.Option.orElse(Option.scala:289)
> 	at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:330)
> 	at org.apache.spark.streaming.dstream.InternalMapWithStateDStream.compute(MapWithStateDStream.scala:134)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
> 	at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
> 	at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:335)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:333)
> 	at scala.Option.orElse(Option.scala:289)
> 	at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:330)
> 	at org.apache.spark.streaming.dstream.InternalMapWithStateDStream.compute(MapWithStateDStream.scala:134)
> 	at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
> {code}



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message