spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Shixiong Zhu (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-23351) checkpoint corruption in long running application
Date Thu, 08 Feb 2018 21:58:00 GMT

    [ https://issues.apache.org/jira/browse/SPARK-23351?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16357629#comment-16357629
] 

Shixiong Zhu commented on SPARK-23351:
--------------------------------------

What's your file system? HDFS?

> checkpoint corruption in long running application
> -------------------------------------------------
>
>                 Key: SPARK-23351
>                 URL: https://issues.apache.org/jira/browse/SPARK-23351
>             Project: Spark
>          Issue Type: Bug
>          Components: Structured Streaming
>    Affects Versions: 2.2.0
>            Reporter: David Ahern
>            Priority: Major
>
> hi, after leaving my (somewhat high volume) Structured Streaming application running
for some time, i get the following exception.  The same exception also repeats when i try
to restart the application.  The only way to get the application back running is to clear
the checkpoint directory which is far from ideal.
> Maybe a stream is not being flushed/closed properly internally by Spark when checkpointing?
>  
>  User class threw exception: org.apache.spark.sql.streaming.StreamingQueryException:
Job aborted due to stage failure: Task 55 in stage 1.0 failed 4 times, most recent failure:
Lost task 55.3 in stage 1.0 (TID 240, gbslixaacspa04u.metis.prd, executor 2): java.io.EOFException
>  at java.io.DataInputStream.readInt(DataInputStream.java:392)
>  at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$readSnapshotFile(HDFSBackedStateStoreProvider.scala:481)
>  at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$$anonfun$org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap$1.apply(HDFSBackedStateStoreProvider.scala:359)
>  at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider$$anonfun$org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap$1.apply(HDFSBackedStateStoreProvider.scala:358)
>  at scala.Option.getOrElse(Option.scala:121)
>  at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.org$apache$spark$sql$execution$streaming$state$HDFSBackedStateStoreProvider$$loadMap(HDFSBackedStateStoreProvider.scala:358)
>  at org.apache.spark.sql.execution.streaming.state.HDFSBackedStateStoreProvider.getStore(HDFSBackedStateStoreProvider.scala:265)
>  at org.apache.spark.sql.execution.streaming.state.StateStore$.get(StateStore.scala:200)
>  at org.apache.spark.sql.execution.streaming.state.StateStoreRDD.compute(StateStoreRDD.scala:61)
>  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>  at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>  at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>  at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>  at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>  at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>  at org.apache.spark.scheduler.Task.run(Task.scala:108)
>  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
>  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>  at java.lang.Thread.run(Thread.java:745)



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message