spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Hyukjin Kwon (JIRA)" <j...@apache.org>
Subject [jira] [Resolved] (SPARK-22038) spark 2.1.1 ml.LogisticRegression with large feature set cause Kryo serialization failed: Buffer overflow
Date Sat, 16 Sep 2017 15:27:00 GMT

     [ https://issues.apache.org/jira/browse/SPARK-22038?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Hyukjin Kwon resolved SPARK-22038.
----------------------------------
    Resolution: Invalid

> spark 2.1.1 ml.LogisticRegression with large feature set cause Kryo serialization failed:
Buffer overflow
> ---------------------------------------------------------------------------------------------------------
>
>                 Key: SPARK-22038
>                 URL: https://issues.apache.org/jira/browse/SPARK-22038
>             Project: Spark
>          Issue Type: Question
>          Components: ML
>    Affects Versions: 2.1.1
>            Reporter: wuhaibo
>
> I try to train a big model.
> I have 40 millions instances and 50 millions feature set, and it is sparse.
> I am using 40 executors with 20 GB each + driver with 40 GB. The number of data partitions
is 5000, the treeAggregate depth is 4, the spark.kryoserializer.buffer.max is 2016m, the spark.driver.maxResultSize
is 40G.
> The execution fails with the following messages:
> +WARN TaskSetManager: Lost task 2.1 in stage 25.0 (TID 1415, Blackstone064183, executor
15): org.apache.spark.SparkException: Kryo serialization failed: Buffer overflow. Available:
3, required: 8
> Serialization trace:
> currMin (org.apache.spark.mllib.stat.MultivariateOnlineSummarizer). To avoid this, increase
spark.kryoserializer.buffer.max value.
>         at org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:315)
>         at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:364)
>         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>         at java.lang.Thread.run(Thread.java:748)
> +
> I know that spark.kryoserializer.buffer.max limit 2g and can not increase.
> I have already try increasing partition num to 10000 and treeAggregate depth to 200,
it still failed with same error message.
> And I try use java serializer without kryoserializer, it failed with oom:
> WARN TaskSetManager: Lost task 5.0 in stage 32.0 (TID 15701, Blackstone065188, executor
4): +java.lang.OutOfMemoryError
>         at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
>         at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
>         at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
>         at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
>         at org.apache.spark.util.ByteBufferOutputStream.write(ByteBufferOutputStream.scala:41)
>         at java.io.ObjectOutputStream$BlockDataOutputStream.drain(ObjectOutputStream.java:1877)
>         at java.io.ObjectOutputStream$BlockDataOutputStream.setBlockDataMode(ObjectOutputStream.java:1786)
>         at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1189)
>         at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:348)
>         at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:43)
>         at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
>         at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:364)
>         at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>         at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>         at java.lang.Thread.run(Thread.java:748)+
> Any advice?



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message