spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Felix Cheung (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-12157) Support numpy types as return values of Python UDFs
Date Tue, 22 Aug 2017 16:32:00 GMT

    [ https://issues.apache.org/jira/browse/SPARK-12157?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16137028#comment-16137028
] 

Felix Cheung commented on SPARK-12157:
--------------------------------------

seems like we have a couple of issues here.
I ran into this recently with scalar types - where are we on this?


> Support numpy types as return values of Python UDFs
> ---------------------------------------------------
>
>                 Key: SPARK-12157
>                 URL: https://issues.apache.org/jira/browse/SPARK-12157
>             Project: Spark
>          Issue Type: Improvement
>          Components: PySpark, SQL
>    Affects Versions: 1.5.2
>            Reporter: Justin Uang
>
> Currently, if I have a python UDF
> {code}
> import pyspark.sql.types as T
> import pyspark.sql.functions as F
> from pyspark.sql import Row
> import numpy as np
> argmax = F.udf(lambda x: np.argmax(x), T.IntegerType())
> df = sqlContext.createDataFrame([Row(array=[1,2,3])])
> df.select(argmax("array")).count()
> {code}
> I get an exception that is fairly opaque:
> {code}
> Caused by: net.razorvine.pickle.PickleException: expected zero arguments for construction
of ClassDict (for numpy.dtype)
>         at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
>         at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:701)
>         at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:171)
>         at net.razorvine.pickle.Unpickler.load(Unpickler.java:85)
>         at net.razorvine.pickle.Unpickler.loads(Unpickler.java:98)
>         at org.apache.spark.sql.execution.BatchPythonEvaluation$$anonfun$doExecute$1$$anonfun$apply$3.apply(python.scala:404)
>         at org.apache.spark.sql.execution.BatchPythonEvaluation$$anonfun$doExecute$1$$anonfun$apply$3.apply(python.scala:403)
> {code}
> Numpy types like np.int and np.float64 should automatically be cast to the proper dtypes.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message