spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Ruben Berenguel (JIRA)" <j...@apache.org>
Subject [jira] [Comment Edited] (SPARK-19044) PySpark dropna() can fail with AnalysisException
Date Mon, 29 May 2017 20:47:04 GMT

    [ https://issues.apache.org/jira/browse/SPARK-19044?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16028620#comment-16028620
] 

Ruben Berenguel edited comment on SPARK-19044 at 5/29/17 8:46 PM:
------------------------------------------------------------------

Seems vaguely related (at least in the code involved) to SPARK-13947 

Interestingly enough, Scala seems to be picking up one of the ids:

scala> v1.na.drop().explain()
== Physical Plan ==
*Filter AtLeastNNulls(n, id#0L)
+- *Range (0, 10, step=1, splits=Some(4))


was (Author: rberenguel):
Seems vaguely related (at least in the code involved) to SPARK-13947 

Interestingly enough, Scala seems to be picking up one of the ids:

```
scala> v1.na.drop().explain()
== Physical Plan ==
*Filter AtLeastNNulls(n, id#0L)
+- *Range (0, 10, step=1, splits=Some(4))
```

> PySpark dropna() can fail with AnalysisException
> ------------------------------------------------
>
>                 Key: SPARK-19044
>                 URL: https://issues.apache.org/jira/browse/SPARK-19044
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark, SQL
>            Reporter: Josh Rosen
>            Priority: Minor
>
> In PySpark, the following fails with an AnalysisException:
> {code}
> v1 = spark.range(10)
> v2 = v1.crossJoin(v1)
> v2.dropna()
> {code}
> {code}
> AnalysisException: u"Reference 'id' is ambiguous, could be: id#66L, id#69L.;"
> {code}
> However, the equivalent Scala code works fine:
> {code}
> val v1 = spark.range(10)
> val v2 = v1.crossJoin(v1)
> v1.na.drop()
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.15#6346)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message