spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "zhengruifeng (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-19208) MaxAbsScaler and MinMaxScaler are very inefficient
Date Thu, 19 Jan 2017 12:56:26 GMT

    [ https://issues.apache.org/jira/browse/SPARK-19208?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15829863#comment-15829863
] 

zhengruifeng commented on SPARK-19208:
--------------------------------------

Ok, I will try to make a design doc for this.
I think it should be placed in ml-local and use ml.linalg to avoid vector conversion, use
DataFrame ops to get better perference, support computation of a subset of metices.

> MaxAbsScaler and MinMaxScaler are very inefficient
> --------------------------------------------------
>
>                 Key: SPARK-19208
>                 URL: https://issues.apache.org/jira/browse/SPARK-19208
>             Project: Spark
>          Issue Type: Improvement
>          Components: ML
>            Reporter: zhengruifeng
>         Attachments: Tests.pdf, WechatIMG2621.jpeg
>
>
> Now, {{MaxAbsScaler}} and {{MinMaxScaler}} are using {{MultivariateOnlineSummarizer}}
to compute the min/max.
> However {{MultivariateOnlineSummarizer}} will also compute extra unused statistics. It
slows down the task, moreover it is more prone to cause OOM.
> For example:
> env : --driver-memory 4G --executor-memory 1G --num-executors 4
> data: [http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2010%20(bridge%20to%20algebra)]
748401 instances,   and 29,890,095 features
> {{MaxAbsScaler.fit}} fails because of OOM
> {{MultivariateOnlineSummarizer}} maintains 8 arrays:
> {code}
> private var currMean: Array[Double] = _
>   private var currM2n: Array[Double] = _
>   private var currM2: Array[Double] = _
>   private var currL1: Array[Double] = _
>   private var totalCnt: Long = 0
>   private var totalWeightSum: Double = 0.0
>   private var weightSquareSum: Double = 0.0
>   private var weightSum: Array[Double] = _
>   private var nnz: Array[Long] = _
>   private var currMax: Array[Double] = _
>   private var currMin: Array[Double] = _
> {code}
> For {{MaxAbsScaler}}, only 1 array is needed (max of abs value)
> For {{MinMaxScaler}}, only 3 arrays are needed (max, min, nnz)
> After modication in the pr, the above example run successfully.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message