spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Nick Pentreath (JIRA)" <j...@apache.org>
Subject [jira] [Resolved] (SPARK-18456) Use matrix abstraction for LogisitRegression coefficients during training
Date Mon, 21 Nov 2016 06:08:58 GMT

     [ https://issues.apache.org/jira/browse/SPARK-18456?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Nick Pentreath resolved SPARK-18456.
------------------------------------
       Resolution: Fixed
         Assignee: Seth Hendrickson
    Fix Version/s: 2.1.0

> Use matrix abstraction for LogisitRegression coefficients during training
> -------------------------------------------------------------------------
>
>                 Key: SPARK-18456
>                 URL: https://issues.apache.org/jira/browse/SPARK-18456
>             Project: Spark
>          Issue Type: Improvement
>          Components: ML
>            Reporter: Seth Hendrickson
>            Assignee: Seth Hendrickson
>            Priority: Minor
>             Fix For: 2.1.0
>
>
> This is a follow up from [SPARK-18060|https://issues.apache.org/jira/browse/SPARK-18060].
The current code for logistic regression relies on manually indexing flat arrays of column
major coefficients, which can be messy and is hard to maintain. We can use a matrix abstraction
instead of a flat array to simplify things. This will make the code easier to read and maintain.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message