spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Alexander Shorin (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-17765) org.apache.spark.mllib.linalg.VectorUDT cannot be cast to org.apache.spark.sql.types.StructType
Date Wed, 05 Oct 2016 09:45:20 GMT

     [ https://issues.apache.org/jira/browse/SPARK-17765?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Alexander Shorin updated SPARK-17765:
-------------------------------------
    Description: 
The issue in subject happens on attempt to transform DataFrame in Parquet format into ORC
while DF contains SparseVector/DenseVector data.

In [sources|https://github.com/apache/spark/blob/v1.6.1/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala#L192]
it looks like that there shouldn't be any serialization issues, but they happens.

{code}
In[4] pqtdf = hqlctx.read.parquet(pqt_feature)

In[5] pqtdf.take(1)
Out[5]: [Row(foo=u'abc, bar=SparseVector(100, {74: 1.0}))]

In[6]: pqtdf.write.format('orc').save('/tmp/orc')
---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-5-57e68fd0c5cb> in <module>()
----> pqtdf.write.format('orc').save('/tmp/orc')

/usr/local/share/spark/python/pyspark/sql/readwriter.pyc in save(self, path, format, mode,
partitionBy, **options)
    395             self._jwrite.save()
    396         else:
--> 397             self._jwrite.save(path)
    398 
    399     @since(1.4)

/usr/local/lib/python2.7/site-packages/py4j/java_gateway.pyc in __call__(self, *args)
    811         answer = self.gateway_client.send_command(command)
    812         return_value = get_return_value(
--> 813             answer, self.gateway_client, self.target_id, self.name)
    814 
    815         for temp_arg in temp_args:

/usr/local/share/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
     43     def deco(*a, **kw):
     44         try:
---> 45             return f(*a, **kw)
     46         except py4j.protocol.Py4JJavaError as e:
     47             s = e.java_exception.toString()

/usr/local/lib/python2.7/site-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client,
target_id, name)
    306                 raise Py4JJavaError(
    307                     "An error occurred while calling {0}{1}{2}.\n".
--> 308                     format(target_id, ".", name), value)
    309             else:
    310                 raise Py4JError(

Py4JJavaError: An error occurred while calling o62.save.
: org.apache.spark.SparkException: Job aborted.
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:156)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
	at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
	at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
	at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
	at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
	at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
	at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:606)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
	at py4j.Gateway.invoke(Gateway.java:259)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:209)
	at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage
3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 185, node123.example.com):
org.apache.spark.SparkException: Task failed while writing rows.
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ClassCastException: org.apache.spark.mllib.linalg.VectorUDT cannot be
cast to org.apache.spark.sql.types.StructType
	at org.apache.spark.sql.hive.HiveInspectors$class.wrap(HiveInspectors.scala:554)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrap(OrcRelation.scala:66)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrapOrcStruct(OrcRelation.scala:128)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.writeInternal(OrcRelation.scala:139)
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:264)
	... 8 more

Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at scala.Option.foreach(Option.scala:236)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1922)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150)
	... 27 more
Caused by: org.apache.spark.SparkException: Task failed while writing rows.
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	... 1 more
Caused by: java.lang.ClassCastException: org.apache.spark.mllib.linalg.VectorUDT cannot be
cast to org.apache.spark.sql.types.StructType
	at org.apache.spark.sql.hive.HiveInspectors$class.wrap(HiveInspectors.scala:554)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrap(OrcRelation.scala:66)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrapOrcStruct(OrcRelation.scala:128)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.writeInternal(OrcRelation.scala:139)
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:264)
	... 8 more
{code}

  was:
The issue in subject happens on attempt to transform DataFrame in Parquet format into ORC
while DF contains SparseVector data. DF with DenseVector transforms fine.

In [sources|https://github.com/apache/spark/blob/v1.6.1/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala#L192]
it looks like that there shouldn't be any serialization issues, but they happens.

{code}
In[4] pqtdf = hqlctx.read.parquet(pqt_feature)

In[5] pqtdf.take(1)
Out[5]: [Row(foo=u'abc, bar=SparseVector(100, {74: 1.0}))]

In[6]: pqtdf.write.format('orc').save('/tmp/orc')
---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-5-57e68fd0c5cb> in <module>()
----> pqtdf.write.format('orc').save('/tmp/orc')

/usr/local/share/spark/python/pyspark/sql/readwriter.pyc in save(self, path, format, mode,
partitionBy, **options)
    395             self._jwrite.save()
    396         else:
--> 397             self._jwrite.save(path)
    398 
    399     @since(1.4)

/usr/local/lib/python2.7/site-packages/py4j/java_gateway.pyc in __call__(self, *args)
    811         answer = self.gateway_client.send_command(command)
    812         return_value = get_return_value(
--> 813             answer, self.gateway_client, self.target_id, self.name)
    814 
    815         for temp_arg in temp_args:

/usr/local/share/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
     43     def deco(*a, **kw):
     44         try:
---> 45             return f(*a, **kw)
     46         except py4j.protocol.Py4JJavaError as e:
     47             s = e.java_exception.toString()

/usr/local/lib/python2.7/site-packages/py4j/protocol.pyc in get_return_value(answer, gateway_client,
target_id, name)
    306                 raise Py4JJavaError(
    307                     "An error occurred while calling {0}{1}{2}.\n".
--> 308                     format(target_id, ".", name), value)
    309             else:
    310                 raise Py4JError(

Py4JJavaError: An error occurred while calling o62.save.
: org.apache.spark.SparkException: Job aborted.
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:156)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
	at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
	at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
	at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
	at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
	at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
	at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:606)
	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
	at py4j.Gateway.invoke(Gateway.java:259)
	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
	at py4j.commands.CallCommand.execute(CallCommand.java:79)
	at py4j.GatewayConnection.run(GatewayConnection.java:209)
	at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage
3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 185, node123.example.com):
org.apache.spark.SparkException: Task failed while writing rows.
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.ClassCastException: org.apache.spark.mllib.linalg.VectorUDT cannot be
cast to org.apache.spark.sql.types.StructType
	at org.apache.spark.sql.hive.HiveInspectors$class.wrap(HiveInspectors.scala:554)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrap(OrcRelation.scala:66)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrapOrcStruct(OrcRelation.scala:128)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.writeInternal(OrcRelation.scala:139)
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:264)
	... 8 more

Driver stacktrace:
	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
	at scala.Option.foreach(Option.scala:236)
	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1922)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150)
	... 27 more
Caused by: org.apache.spark.SparkException: Task failed while writing rows.
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
	at org.apache.spark.scheduler.Task.run(Task.scala:89)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
	... 1 more
Caused by: java.lang.ClassCastException: org.apache.spark.mllib.linalg.VectorUDT cannot be
cast to org.apache.spark.sql.types.StructType
	at org.apache.spark.sql.hive.HiveInspectors$class.wrap(HiveInspectors.scala:554)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrap(OrcRelation.scala:66)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrapOrcStruct(OrcRelation.scala:128)
	at org.apache.spark.sql.hive.orc.OrcOutputWriter.writeInternal(OrcRelation.scala:139)
	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:264)
	... 8 more
{code}


> org.apache.spark.mllib.linalg.VectorUDT cannot be cast to org.apache.spark.sql.types.StructType
> -----------------------------------------------------------------------------------------------
>
>                 Key: SPARK-17765
>                 URL: https://issues.apache.org/jira/browse/SPARK-17765
>             Project: Spark
>          Issue Type: Bug
>          Components: MLlib, PySpark, SQL
>    Affects Versions: 1.6.1
>            Reporter: Alexander Shorin
>
> The issue in subject happens on attempt to transform DataFrame in Parquet format into
ORC while DF contains SparseVector/DenseVector data.
> In [sources|https://github.com/apache/spark/blob/v1.6.1/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala#L192]
it looks like that there shouldn't be any serialization issues, but they happens.
> {code}
> In[4] pqtdf = hqlctx.read.parquet(pqt_feature)
> In[5] pqtdf.take(1)
> Out[5]: [Row(foo=u'abc, bar=SparseVector(100, {74: 1.0}))]
> In[6]: pqtdf.write.format('orc').save('/tmp/orc')
> ---------------------------------------------------------------------------
> Py4JJavaError                             Traceback (most recent call last)
> <ipython-input-5-57e68fd0c5cb> in <module>()
> ----> pqtdf.write.format('orc').save('/tmp/orc')
> /usr/local/share/spark/python/pyspark/sql/readwriter.pyc in save(self, path, format,
mode, partitionBy, **options)
>     395             self._jwrite.save()
>     396         else:
> --> 397             self._jwrite.save(path)
>     398 
>     399     @since(1.4)
> /usr/local/lib/python2.7/site-packages/py4j/java_gateway.pyc in __call__(self, *args)
>     811         answer = self.gateway_client.send_command(command)
>     812         return_value = get_return_value(
> --> 813             answer, self.gateway_client, self.target_id, self.name)
>     814 
>     815         for temp_arg in temp_args:
> /usr/local/share/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
>      43     def deco(*a, **kw):
>      44         try:
> ---> 45             return f(*a, **kw)
>      46         except py4j.protocol.Py4JJavaError as e:
>      47             s = e.java_exception.toString()
> /usr/local/lib/python2.7/site-packages/py4j/protocol.pyc in get_return_value(answer,
gateway_client, target_id, name)
>     306                 raise Py4JJavaError(
>     307                     "An error occurred while calling {0}{1}{2}.\n".
> --> 308                     format(target_id, ".", name), value)
>     309             else:
>     310                 raise Py4JError(
> Py4JJavaError: An error occurred while calling o62.save.
> : org.apache.spark.SparkException: Job aborted.
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:156)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply(InsertIntoHadoopFsRelation.scala:108)
> 	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:108)
> 	at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
> 	at org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
> 	at org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
> 	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
> 	at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
> 	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
> 	at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
> 	at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
> 	at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
> 	at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
> 	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
> 	at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)
> 	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> 	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
> 	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> 	at java.lang.reflect.Method.invoke(Method.java:606)
> 	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
> 	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
> 	at py4j.Gateway.invoke(Gateway.java:259)
> 	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
> 	at py4j.commands.CallCommand.execute(CallCommand.java:79)
> 	at py4j.GatewayConnection.run(GatewayConnection.java:209)
> 	at java.lang.Thread.run(Thread.java:745)
> Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0
in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 185, node123.example.com):
org.apache.spark.SparkException: Task failed while writing rows.
> 	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
> 	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
> 	at org.apache.spark.scheduler.Task.run(Task.scala:89)
> 	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> 	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> 	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> 	at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.ClassCastException: org.apache.spark.mllib.linalg.VectorUDT cannot
be cast to org.apache.spark.sql.types.StructType
> 	at org.apache.spark.sql.hive.HiveInspectors$class.wrap(HiveInspectors.scala:554)
> 	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrap(OrcRelation.scala:66)
> 	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrapOrcStruct(OrcRelation.scala:128)
> 	at org.apache.spark.sql.hive.orc.OrcOutputWriter.writeInternal(OrcRelation.scala:139)
> 	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:264)
> 	... 8 more
> Driver stacktrace:
> 	at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
> 	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
> 	at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
> 	at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> 	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> 	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
> 	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
> 	at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
> 	at scala.Option.foreach(Option.scala:236)
> 	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
> 	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
> 	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
> 	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
> 	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> 	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
> 	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
> 	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
> 	at org.apache.spark.SparkContext.runJob(SparkContext.scala:1922)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1.apply$mcV$sp(InsertIntoHadoopFsRelation.scala:150)
> 	... 27 more
> Caused by: org.apache.spark.SparkException: Task failed while writing rows.
> 	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:272)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
> 	at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150)
> 	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
> 	at org.apache.spark.scheduler.Task.run(Task.scala:89)
> 	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> 	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> 	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> 	... 1 more
> Caused by: java.lang.ClassCastException: org.apache.spark.mllib.linalg.VectorUDT cannot
be cast to org.apache.spark.sql.types.StructType
> 	at org.apache.spark.sql.hive.HiveInspectors$class.wrap(HiveInspectors.scala:554)
> 	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrap(OrcRelation.scala:66)
> 	at org.apache.spark.sql.hive.orc.OrcOutputWriter.wrapOrcStruct(OrcRelation.scala:128)
> 	at org.apache.spark.sql.hive.orc.OrcOutputWriter.writeInternal(OrcRelation.scala:139)
> 	at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:264)
> 	... 8 more
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message