spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Joseph K. Bradley (JIRA)" <j...@apache.org>
Subject [jira] [Issue Comment Deleted] (SPARK-17697) BinaryLogisticRegressionSummary, GLM Summary should handle non-Double numeric types
Date Sat, 01 Oct 2016 18:03:22 GMT

     [ https://issues.apache.org/jira/browse/SPARK-17697?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Joseph K. Bradley updated SPARK-17697:
--------------------------------------
    Comment: was deleted

(was: Leaving open for follow-up to fix all GLM issues)

> BinaryLogisticRegressionSummary, GLM Summary should handle non-Double numeric types
> -----------------------------------------------------------------------------------
>
>                 Key: SPARK-17697
>                 URL: https://issues.apache.org/jira/browse/SPARK-17697
>             Project: Spark
>          Issue Type: Bug
>          Components: ML
>    Affects Versions: 2.0.1, 2.1.0
>            Reporter: Joseph K. Bradley
>            Assignee: Bryan Cutler
>             Fix For: 2.0.2, 2.1.0
>
>
> Say you have a DataFrame with a label column of Integer type.  You can fit a LogisticRegresionModel
since LR handles casting to DoubleType internally.
> However, if you call evaluate() on it, then this line does not handle casting properly,
so you get a runtime error (MatchError) for an invalid schema: [https://github.com/apache/spark/blob/2cd327ef5e4c3f6b8468ebb2352479a1686b7888/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala#L863]
> We should handle casting.  And test evaluate() with other numeric types.
> **ALSO** We should check elsewhere in logreg and other algorithms to see if we can catch
the same issue elsewhere.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message