spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Steven Lowenthal (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SPARK-16513) Spark executor deadlocks itself in memory management
Date Wed, 13 Jul 2016 17:15:20 GMT

     [ https://issues.apache.org/jira/browse/SPARK-16513?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Steven Lowenthal updated SPARK-16513:
-------------------------------------
    Attachment: hung.executor.stack.txt
                driver.stack.txt

> Spark executor deadlocks itself in memory management
> ----------------------------------------------------
>
>                 Key: SPARK-16513
>                 URL: https://issues.apache.org/jira/browse/SPARK-16513
>             Project: Spark
>          Issue Type: Bug
>          Components: Spark Core
>    Affects Versions: 1.6.1
>            Reporter: Steven Lowenthal
>         Attachments: driver.stack.txt, hung.executor.stack.txt, screenshot-1.png, sparklog
>
>
> I have a spark streaming application which uses stateful RDDs (2 to be exact), but a
given job only uses one.  The last part of the executor stderr log is enclosed.  There is
no output in stdout.  There are 3 concurrent Spark tasks on the executor deadlocked as follows:
 
> org.apache.spark.storage.BlockManager.dropFromMemory(BlockManager.scala:1029)
> org.apache.spark.storage.BlockManager.dropFromMemory(BlockManager.scala:1009)
> org.apache.spark.storage.MemoryStore$$anonfun$evictBlocksToFreeSpace$2.apply(MemoryStore.scala:460)
> org.apache.spark.storage.MemoryStore$$anonfun$evictBlocksToFreeSpace$2.apply(MemoryStore.scala:449)
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> org.apache.spark.storage.MemoryStore.evictBlocksToFreeSpace(MemoryStore.scala:449)
> org.apache.spark.memory.StorageMemoryPool.acquireMemory(StorageMemoryPool.scala:89)
> org.apache.spark.memory.StorageMemoryPool.acquireMemory(StorageMemoryPool.scala:69)
> org.apache.spark.memory.UnifiedMemoryManager.acquireStorageMemory(UnifiedMemoryManager.scala:155)
> org.apache.spark.memory.UnifiedMemoryManager.acquireUnrollMemory(UnifiedMemoryManager.scala:162)
> org.apache.spark.storage.MemoryStore.reserveUnrollMemoryForThisTask(MemoryStore.scala:493)
> org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:291)
> org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> org.apache.spark.scheduler.Task.run(Task.scala:89)
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> java.lang.Thread.run(Thread.java:745)
> org.apache.spark.storage.MemoryStore.tryToPut(MemoryStore.scala:379)
> org.apache.spark.storage.MemoryStore.tryToPut(MemoryStore.scala:346)
> org.apache.spark.storage.MemoryStore.putArray(MemoryStore.scala:133)
> org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:800)
> org.apache.spark.storage.BlockManager.putArray(BlockManager.scala:676)
> org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:175)
> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> org.apache.spark.scheduler.Task.run(Task.scala:89)
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> java.lang.Thread.run(Thread.java:745)
> org.apache.spark.memory.MemoryManager.releaseExecutionMemory(MemoryManager.scala:120)
> org.apache.spark.memory.TaskMemoryManager.releaseExecutionMemory(TaskMemoryManager.java:201)
> org.apache.spark.util.collection.Spillable$class.releaseMemory(Spillable.scala:111)
> org.apache.spark.util.collection.ExternalSorter.releaseMemory(ExternalSorter.scala:89)
> org.apache.spark.util.collection.ExternalSorter.stop(ExternalSorter.scala:694)
> org.apache.spark.shuffle.sort.SortShuffleWriter.stop(SortShuffleWriter.scala:95)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:74)
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> org.apache.spark.scheduler.Task.run(Task.scala:89)
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> java.lang.Thread.run(Thread.java:745)
> This is the log file exerpt:



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message