spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Mahmoud Rawas (JIRA)" <j...@apache.org>
Subject [jira] [Commented] (SPARK-16235) "evaluateEachIteration" is returning wrong results when calculated for classification model.
Date Mon, 27 Jun 2016 23:16:57 GMT

    [ https://issues.apache.org/jira/browse/SPARK-16235?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15352022#comment-15352022
] 

Mahmoud Rawas commented on SPARK-16235:
---------------------------------------

I am working on a fix 


> "evaluateEachIteration" is returning wrong results when calculated for classification
model.
> --------------------------------------------------------------------------------------------
>
>                 Key: SPARK-16235
>                 URL: https://issues.apache.org/jira/browse/SPARK-16235
>             Project: Spark
>          Issue Type: Bug
>    Affects Versions: 1.6.1, 1.6.2, 2.0.0
>            Reporter: Mahmoud Rawas
>
> Basically within the mentioned function there is a code to map the actual value which
supposed to be in the range of \[0,1] into the range of \[-1,1], in order to make it compatible
with the predicted value produces by a classification mode. 
> {code}
> val remappedData = algo match {
>       case Classification => data.map(x => new LabeledPoint((x.label * 2) - 1,
x.features))
>       case _ => data
>     }
> {code}
> the problem with this approach is the fact that it will calculate an incorrect error
for an example mse will be be 4 time larger than the actual expected mse 
> Instead we should map the predicted value into probability value in [0,1].



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message