spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Andrew Or (JIRA)" <j...@apache.org>
Subject [jira] [Assigned] (SPARK-15538) Truncate table does not work on data source table
Date Thu, 26 May 2016 00:44:12 GMT

     [ https://issues.apache.org/jira/browse/SPARK-15538?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Andrew Or reassigned SPARK-15538:
---------------------------------

    Assignee: Andrew Or  (was: Suresh Thalamati)

> Truncate table does not work on data source table
> -------------------------------------------------
>
>                 Key: SPARK-15538
>                 URL: https://issues.apache.org/jira/browse/SPARK-15538
>             Project: Spark
>          Issue Type: Bug
>          Components: SQL
>            Reporter: Suresh Thalamati
>            Assignee: Andrew Or
>            Priority: Minor
>
> Truncate table does not  seems to work on data source table. It returns success without
any error , but table is not truncated. 
> Repro:
> {code}
> val df = Seq((1 , "john", "CA") ,(2,"Mike", "NY"), (3, "Robert", "CA")).toDF("id", "name",
"state")
> df.write.format("parquet").partitionBy("state").saveAsTable("emp")
> scala> sql("truncate table emp") 
> res8: org.apache.spark.sql.DataFrame = []
> scala> sql("select * from emp").show ;
> +---+------+-----+
> | id|  name|state|
> +---+------+-----+
> |  3|Robert|   CA|
> |  1|  john|   CA|
> |  2|  Mike|   NY|
> +---+------+-----+
> {code} 
> The select should have returned no results. 
> By scanning through  the code  I found  some of the other DDL commands like LOAD DATA
,  and SHOW PARTITIONS are not allowed for data source table and they raise error. 
> It  Might be good to throw error until the truncate table works with  data source table
also.
>  



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message