spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Xiangrui Meng (JIRA)" <j...@apache.org>
Subject [jira] [Resolved] (SPARK-9245) DistributedLDAModel predict top topic per doc-term instance
Date Thu, 20 Aug 2015 22:01:46 GMT

     [ https://issues.apache.org/jira/browse/SPARK-9245?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

Xiangrui Meng resolved SPARK-9245.
----------------------------------
       Resolution: Fixed
    Fix Version/s: 1.5.0

Issue resolved by pull request 8329
[https://github.com/apache/spark/pull/8329]

> DistributedLDAModel predict top topic per doc-term instance
> -----------------------------------------------------------
>
>                 Key: SPARK-9245
>                 URL: https://issues.apache.org/jira/browse/SPARK-9245
>             Project: Spark
>          Issue Type: New Feature
>          Components: MLlib
>            Reporter: Joseph K. Bradley
>            Assignee: Joseph K. Bradley
>             Fix For: 1.5.0
>
>   Original Estimate: 48h
>  Remaining Estimate: 48h
>
> For each (document, term) pair, return top topic.  Note that instances of (doc, term)
pairs within a document (a.k.a. "tokens") are exchangeable, so we should provide an estimate
per document-term, rather than per token.
> Synopsis for DistributedLDAModel:
> {code}
> /** @return RDD of (doc ID, vector of top topic index for each term) */
> def topTopicAssignments: RDD[(Long, Vector)]
> {code}
> Note that using Vector will let us have a sparse encoding which is Java-friendly.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message