spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Michael Bieniosek (JIRA)" <j...@apache.org>
Subject [jira] [Created] (SPARK-6698) RandomForest.scala (et al) hardcodes usage of StorageLevel.MEMORY_AND_DISK
Date Fri, 03 Apr 2015 16:04:53 GMT
Michael Bieniosek created SPARK-6698:
----------------------------------------

             Summary: RandomForest.scala (et al) hardcodes usage of StorageLevel.MEMORY_AND_DISK
                 Key: SPARK-6698
                 URL: https://issues.apache.org/jira/browse/SPARK-6698
             Project: Spark
          Issue Type: Bug
          Components: MLlib
    Affects Versions: 1.3.0
            Reporter: Michael Bieniosek


In RandomForest.scala the feature input is persisted with StorageLevel.MEMORY_AND_DISK during
the bagging phase, even if the bagging rate is set at 100%.  This forces the RDD to be stored
unserialized, which causes major JVM GC headaches if the RDD is sizable.  

Something similar happens in NodeIdCache.scala though I believe in this case the RDD is smaller.

A simple fix would be to use the same StorageLevel as the input RDD. 




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message