spark-issues mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Joseph K. Bradley (JIRA)" <j...@apache.org>
Subject [jira] [Created] (SPARK-3727) DecisionTree, RandomForest: More prediction functionality
Date Mon, 29 Sep 2014 18:40:35 GMT
Joseph K. Bradley created SPARK-3727:
----------------------------------------

             Summary: DecisionTree, RandomForest: More prediction functionality
                 Key: SPARK-3727
                 URL: https://issues.apache.org/jira/browse/SPARK-3727
             Project: Spark
          Issue Type: Improvement
          Components: MLlib
            Reporter: Joseph K. Bradley


DecisionTree and RandomForest currently predict the most likely label for classification and
the mean for regression.  Other info about predictions would be useful.

For classification: estimated probability of each possible label
For regression: variance of estimate

RandomForest could also create aggregate predictions in multiple ways:
* Predict mean or median value for regression.
* Compute variance of estimates (across all trees) for both classification and regression.




--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscribe@spark.apache.org
For additional commands, e-mail: issues-help@spark.apache.org


Mime
View raw message