spark-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Jeff Zhang <zjf...@gmail.com>
Subject Re: Is spark.driver.maxResultSize used correctly ?
Date Mon, 29 Feb 2016 00:17:01 GMT
data skew might be possible, but not the common case. I think we should
design for the common case, for the skew case, we may can set some
parameter of fraction to allow user to tune it.

On Sat, Feb 27, 2016 at 4:51 PM, Reynold Xin <rxin@databricks.com> wrote:

> But sometimes you might have skew and almost all the result data are in
> one or a few tasks though.
>
>
> On Friday, February 26, 2016, Jeff Zhang <zjffdu@gmail.com> wrote:
>
>>
>> My job get this exception very easily even when I set large value of
>> spark.driver.maxResultSize. After checking the spark code, I found
>> spark.driver.maxResultSize is also used in Executor side to decide whether
>> DirectTaskResult/InDirectTaskResult sent. This doesn't make sense to me.
>> Using  spark.driver.maxResultSize / taskNum might be more proper. Because
>> if  spark.driver.maxResultSize is 1g and we have 10 tasks each has 200m
>> output. Then even the output of each task is less than
>>  spark.driver.maxResultSize so DirectTaskResult will be sent to driver, but
>> the total result size is 2g which will cause exception in driver side.
>>
>>
>> 16/02/26 10:10:49 INFO DAGScheduler: Job 4 failed: treeAggregate at
>> LogisticRegression.scala:283, took 33.796379 s
>>
>> Exception in thread "main" org.apache.spark.SparkException: Job aborted
>> due to stage failure: Total size of serialized results of 1 tasks (1085.0
>> MB) is bigger than spark.driver.maxResultSize (1024.0 MB)
>>
>>
>> --
>> Best Regards
>>
>> Jeff Zhang
>>
>


-- 
Best Regards

Jeff Zhang

Mime
View raw message