spark-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Fabrizio Milo aka misto <mistob...@gmail.com>
Subject scala.collection.immutable.Nil$ cannot be cast to org.apache.spark.util.BoundedPriorityQueue
Date Sun, 23 Feb 2014 01:35:24 GMT
Hello Spark Developers,

While trying to use the takeOrdered method of RDD in the following way:

  object AceScoreOrdering extends Ordering[Record] {
      def compare(a:Record, b:Record) = a.score.ace_score compare
b.score.ace_score
    }

    val collected = dataset.takeOrdered(topN)(AceScoreOrdering)

I got this error:

14/02/22 09:11:53 ERROR actor.OneForOneStrategy:
scala.collection.immutable.Nil$ cannot be cast to
org.apache.spark.util.BoundedPriorityQueue
java.lang.ClassCastException: scala.collection.immutable.Nil$ cannot
be cast to org.apache.spark.util.BoundedPriorityQueue
at org.apache.spark.rdd.RDD$$anonfun$top$2.apply(RDD.scala:941)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:727)
at org.apache.spark.rdd.RDD$$anonfun$8.apply(RDD.scala:724)
at org.apache.spark.scheduler.JobWaiter.taskSucceeded(JobWaiter.scala:56)
at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:843)
at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:598)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)


The error happens in this piece of code ( this is from today's TIP on github) :

  def top(num: Int)(implicit ord: Ordering[T]): Array[T] = {
    mapPartitions { items =>
      val queue = new BoundedPriorityQueue[T](num)
      queue ++= items
      Iterator.single(queue)
    }.reduce { (queue1, queue2) =>
      queue1 ++= queue2
      queue1
    }.toArray.sorted(ord.reverse)
  }

I am not an expert of scala but looks like in case one of the
partition returns a completely empty
collection ( scala.collection.immutable.Nil ? ) then the system is not
able to reduce it to a queue.

Now the real question is that I was trying to emulate this behavior
with a simple test inside RDDSuite.scala:


test("takeOrdered with nil partition") {
    case class Custom(value: Int) extends Serializable
    object CustomOrdering extends Ordering[Custom] {
      def compare(a:Custom, b:Custom) = a.value compare b.value
    }
    val nums = Array(Custom(1), Custom(2))
     val rdd = sc.makeRDD(nums, 2)
    val sortedTopK = rdd.takeOrdered(3)(CustomOrdering)
    assert(sortedTopK.size === 2)
    assert(sortedTopK === Array(Custom(1), Custom(2)))
    assert(sortedTopK === nums.sorted(CustomOrdering).take(2))
  }


But out of no where I get this error:

Job aborted: Task not serializable: java.io.NotSerializableException:
org.apache.spark.SparkConf
org.apache.spark.SparkException: Job aborted: Task not serializable:
java.io.NotSerializableException: org.apache.spark.SparkConf
at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1017)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1015)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1015)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:778)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:721)
at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:551)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:190)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
at akka.actor.ActorCell.invoke(ActorCell.scala:456)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
at akka.dispatch.Mailbox.run(Mailbox.scala:219)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)


Can someone explain me why do I get SparkConf not serializable error ?
out of where ?

Thank you for you time

Fabrizio
-- 
LinkedIn: http://linkedin.com/in/fmilo
Twitter: @fabmilo
Github: http://github.com/Mistobaan/
-----------------------
Simplicity, consistency, and repetition - that's how you get through.
(Jack Welch)
Perfection must be reached by degrees; she requires the slow hand of
time (Voltaire)
The best way to predict the future is to invent it (Alan Kay)

Mime
View raw message