spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From felixche...@apache.org
Subject spark git commit: [SPARKR][DOC] fix link in vignettes
Date Fri, 02 Mar 2018 17:24:13 GMT
Repository: spark
Updated Branches:
  refs/heads/branch-2.3 56cfbd932 -> 8fe20e151


[SPARKR][DOC] fix link in vignettes

## What changes were proposed in this pull request?

Fix doc link that was changed in 2.3

shivaram

Author: Felix Cheung <felixcheung_m@hotmail.com>

Closes #20711 from felixcheung/rvigmean.

(cherry picked from commit 0b6ceadeb563205cbd6bd03bc88e608086273b5b)
Signed-off-by: Felix Cheung <felixcheung@apache.org>


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/8fe20e15
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/8fe20e15
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/8fe20e15

Branch: refs/heads/branch-2.3
Commit: 8fe20e15196b4ddbd80828ad3a91cf06c5dbea84
Parents: 56cfbd9
Author: Felix Cheung <felixcheung_m@hotmail.com>
Authored: Fri Mar 2 09:23:39 2018 -0800
Committer: Felix Cheung <felixcheung@apache.org>
Committed: Fri Mar 2 09:24:10 2018 -0800

----------------------------------------------------------------------
 R/pkg/vignettes/sparkr-vignettes.Rmd | 20 ++++++++++----------
 1 file changed, 10 insertions(+), 10 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/8fe20e15/R/pkg/vignettes/sparkr-vignettes.Rmd
----------------------------------------------------------------------
diff --git a/R/pkg/vignettes/sparkr-vignettes.Rmd b/R/pkg/vignettes/sparkr-vignettes.Rmd
index feca617..d4713de 100644
--- a/R/pkg/vignettes/sparkr-vignettes.Rmd
+++ b/R/pkg/vignettes/sparkr-vignettes.Rmd
@@ -46,7 +46,7 @@ Sys.setenv("_JAVA_OPTIONS" = paste("-XX:-UsePerfData", old_java_opt, sep
= " "))
 
 ## Overview
 
-SparkR is an R package that provides a light-weight frontend to use Apache Spark from R.
With Spark `r packageVersion("SparkR")`, SparkR provides a distributed data frame implementation
that supports data processing operations like selection, filtering, aggregation etc. and distributed
machine learning using [MLlib](http://spark.apache.org/mllib/).
+SparkR is an R package that provides a light-weight frontend to use Apache Spark from R.
With Spark `r packageVersion("SparkR")`, SparkR provides a distributed data frame implementation
that supports data processing operations like selection, filtering, aggregation etc. and distributed
machine learning using [MLlib](https://spark.apache.org/mllib/).
 
 ## Getting Started
 
@@ -132,7 +132,7 @@ sparkR.session.stop()
 
 Different from many other R packages, to use SparkR, you need an additional installation
of Apache Spark. The Spark installation will be used to run a backend process that will compile
and execute SparkR programs.
 
-After installing the SparkR package, you can call `sparkR.session` as explained in the previous
section to start and it will check for the Spark installation. If you are working with SparkR
from an interactive shell (eg. R, RStudio) then Spark is downloaded and cached automatically
if it is not found. Alternatively, we provide an easy-to-use function `install.spark` for
running this manually. If you don't have Spark installed on the computer, you may download
it from [Apache Spark Website](http://spark.apache.org/downloads.html).
+After installing the SparkR package, you can call `sparkR.session` as explained in the previous
section to start and it will check for the Spark installation. If you are working with SparkR
from an interactive shell (eg. R, RStudio) then Spark is downloaded and cached automatically
if it is not found. Alternatively, we provide an easy-to-use function `install.spark` for
running this manually. If you don't have Spark installed on the computer, you may download
it from [Apache Spark Website](https://spark.apache.org/downloads.html).
 
 ```{r, eval=FALSE}
 install.spark()
@@ -147,7 +147,7 @@ sparkR.session(sparkHome = "/HOME/spark")
 ### Spark Session {#SetupSparkSession}
 
 
-In addition to `sparkHome`, many other options can be specified in `sparkR.session`. For
a complete list, see [Starting up: SparkSession](http://spark.apache.org/docs/latest/sparkr.html#starting-up-sparksession)
and [SparkR API doc](http://spark.apache.org/docs/latest/api/R/sparkR.session.html).
+In addition to `sparkHome`, many other options can be specified in `sparkR.session`. For
a complete list, see [Starting up: SparkSession](https://spark.apache.org/docs/latest/sparkr.html#starting-up-sparksession)
and [SparkR API doc](https://spark.apache.org/docs/latest/api/R/sparkR.session.html).
 
 In particular, the following Spark driver properties can be set in `sparkConfig`.
 
@@ -169,7 +169,7 @@ sparkR.session(spark.sql.warehouse.dir = spark_warehouse_path)
 
 
 #### Cluster Mode
-SparkR can connect to remote Spark clusters. [Cluster Mode Overview](http://spark.apache.org/docs/latest/cluster-overview.html)
is a good introduction to different Spark cluster modes.
+SparkR can connect to remote Spark clusters. [Cluster Mode Overview](https://spark.apache.org/docs/latest/cluster-overview.html)
is a good introduction to different Spark cluster modes.
 
 When connecting SparkR to a remote Spark cluster, make sure that the Spark version and Hadoop
version on the machine match the corresponding versions on the cluster. Current SparkR package
is compatible with
 ```{r, echo=FALSE, tidy = TRUE}
@@ -177,7 +177,7 @@ paste("Spark", packageVersion("SparkR"))
 ```
 It should be used both on the local computer and on the remote cluster.
 
-To connect, pass the URL of the master node to `sparkR.session`. A complete list can be seen
in [Spark Master URLs](http://spark.apache.org/docs/latest/submitting-applications.html#master-urls).
+To connect, pass the URL of the master node to `sparkR.session`. A complete list can be seen
in [Spark Master URLs](https://spark.apache.org/docs/latest/submitting-applications.html#master-urls).
 For example, to connect to a local standalone Spark master, we can call
 
 ```{r, eval=FALSE}
@@ -317,7 +317,7 @@ A common flow of grouping and aggregation is
 
 2. Feed the `GroupedData` object to `agg` or `summarize` functions, with some provided aggregation
functions to compute a number within each group.
 
-A number of widely used functions are supported to aggregate data after grouping, including
`avg`, `countDistinct`, `count`, `first`, `kurtosis`, `last`, `max`, `mean`, `min`, `sd`,
`skewness`, `stddev_pop`, `stddev_samp`, `sumDistinct`, `sum`, `var_pop`, `var_samp`, `var`.
See the [API doc for `mean`](http://spark.apache.org/docs/latest/api/R/mean.html) and other
`agg_funcs` linked there.
+A number of widely used functions are supported to aggregate data after grouping, including
`avg`, `countDistinct`, `count`, `first`, `kurtosis`, `last`, `max`, `mean`, `min`, `sd`,
`skewness`, `stddev_pop`, `stddev_samp`, `sumDistinct`, `sum`, `var_pop`, `var_samp`, `var`.
See the [API doc for aggregate functions](https://spark.apache.org/docs/latest/api/R/column_aggregate_functions.html)
linked there.
 
 For example we can compute a histogram of the number of cylinders in the `mtcars` dataset
as shown below.
 
@@ -935,7 +935,7 @@ perplexity
 
 #### Alternating Least Squares
 
-`spark.als` learns latent factors in [collaborative filtering](https://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering)
via [alternating least squares](http://dl.acm.org/citation.cfm?id=1608614).
+`spark.als` learns latent factors in [collaborative filtering](https://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering)
via [alternating least squares](https://dl.acm.org/citation.cfm?id=1608614).
 
 There are multiple options that can be configured in `spark.als`, including `rank`, `reg`,
and `nonnegative`. For a complete list, refer to the help file.
 
@@ -1171,11 +1171,11 @@ env | map
 
 ## References
 
-* [Spark Cluster Mode Overview](http://spark.apache.org/docs/latest/cluster-overview.html)
+* [Spark Cluster Mode Overview](https://spark.apache.org/docs/latest/cluster-overview.html)
 
-* [Submitting Spark Applications](http://spark.apache.org/docs/latest/submitting-applications.html)
+* [Submitting Spark Applications](https://spark.apache.org/docs/latest/submitting-applications.html)
 
-* [Machine Learning Library Guide (MLlib)](http://spark.apache.org/docs/latest/ml-guide.html)
+* [Machine Learning Library Guide (MLlib)](https://spark.apache.org/docs/latest/ml-guide.html)
 
 * [SparkR: Scaling R Programs with Spark](https://people.csail.mit.edu/matei/papers/2016/sigmod_sparkr.pdf),
Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui Meng,
Reynold Xin, Ali Ghodsi, Michael Franklin, Ion Stoica, and Matei Zaharia. SIGMOD 2016. June
2016.
 


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message