spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From sro...@apache.org
Subject [2/4] spark git commit: [SPARK-3359][DOCS] Make javadoc8 working for unidoc/genjavadoc compatibility in Java API documentation
Date Tue, 29 Nov 2016 09:42:00 GMT
http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/BoostingStrategy.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/BoostingStrategy.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/BoostingStrategy.scala
index d8405d1..4334b31 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/BoostingStrategy.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/BoostingStrategy.scala
@@ -36,14 +36,14 @@ import org.apache.spark.mllib.tree.loss.{LogLoss, Loss, SquaredError}
  * @param validationTol validationTol is a condition which decides iteration termination when
  *                      runWithValidation is used.
  *                      The end of iteration is decided based on below logic:
- *                      If the current loss on the validation set is > 0.01, the diff
+ *                      If the current loss on the validation set is greater than 0.01, the diff
  *                      of validation error is compared to relative tolerance which is
  *                      validationTol * (current loss on the validation set).
- *                      If the current loss on the validation set is <= 0.01, the diff
- *                      of validation error is compared to absolute tolerance which is
+ *                      If the current loss on the validation set is less than or equal to 0.01,
+ *                      the diff of validation error is compared to absolute tolerance which is
  *                      validationTol * 0.01.
  *                      Ignored when
- *                      [[org.apache.spark.mllib.tree.GradientBoostedTrees.run()]] is used.
+ *                      `org.apache.spark.mllib.tree.GradientBoostedTrees.run()` is used.
  */
 @Since("1.2.0")
 case class BoostingStrategy @Since("1.4.0") (
@@ -92,8 +92,8 @@ object BoostingStrategy {
   /**
    * Returns default configuration for the boosting algorithm
    * @param algo Learning goal.  Supported:
-   *             [[org.apache.spark.mllib.tree.configuration.Algo.Classification]],
-   *             [[org.apache.spark.mllib.tree.configuration.Algo.Regression]]
+   *             `org.apache.spark.mllib.tree.configuration.Algo.Classification`,
+   *             `org.apache.spark.mllib.tree.configuration.Algo.Regression`
    * @return Configuration for boosting algorithm
    */
   @Since("1.3.0")

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala
index b34e1b1..58e8f5b 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/configuration/Strategy.scala
@@ -28,8 +28,8 @@ import org.apache.spark.mllib.tree.impurity.{Entropy, Gini, Impurity, Variance}
 /**
  * Stores all the configuration options for tree construction
  * @param algo  Learning goal.  Supported:
- *              [[org.apache.spark.mllib.tree.configuration.Algo.Classification]],
- *              [[org.apache.spark.mllib.tree.configuration.Algo.Regression]]
+ *              `org.apache.spark.mllib.tree.configuration.Algo.Classification`,
+ *              `org.apache.spark.mllib.tree.configuration.Algo.Regression`
  * @param impurity Criterion used for information gain calculation.
  *                 Supported for Classification: [[org.apache.spark.mllib.tree.impurity.Gini]],
  *                  [[org.apache.spark.mllib.tree.impurity.Entropy]].
@@ -43,9 +43,9 @@ import org.apache.spark.mllib.tree.impurity.{Entropy, Gini, Impurity, Variance}
  *                for choosing how to split on features at each node.
  *                More bins give higher granularity.
  * @param quantileCalculationStrategy Algorithm for calculating quantiles.  Supported:
- *                             [[org.apache.spark.mllib.tree.configuration.QuantileStrategy.Sort]]
+ *                             `org.apache.spark.mllib.tree.configuration.QuantileStrategy.Sort`
  * @param categoricalFeaturesInfo A map storing information about the categorical variables and the
- *                                number of discrete values they take. An entry (n -> k)
+ *                                number of discrete values they take. An entry (n to k)
  *                                indicates that feature n is categorical with k categories
  *                                indexed from 0: {0, 1, ..., k-1}.
  * @param minInstancesPerNode Minimum number of instances each child must have after split.

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala
index be2704d..bda5e66 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/Split.scala
@@ -25,7 +25,7 @@ import org.apache.spark.mllib.tree.configuration.FeatureType.FeatureType
  * Split applied to a feature
  * @param feature feature index
  * @param threshold Threshold for continuous feature.
- *                  Split left if feature &lt;= threshold, else right.
+ *                  Split left if feature is less than or equal to threshold, else right.
  * @param featureType type of feature -- categorical or continuous
  * @param categories Split left if categorical feature value is in this set, else right.
  */

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/catalyst/src/main/scala/org/apache/spark/sql/InternalOutputModes.scala
----------------------------------------------------------------------
diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/InternalOutputModes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/InternalOutputModes.scala
index 153f9f5..594c41c 100644
--- a/sql/catalyst/src/main/scala/org/apache/spark/sql/InternalOutputModes.scala
+++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/InternalOutputModes.scala
@@ -20,7 +20,7 @@ package org.apache.spark.sql
 import org.apache.spark.sql.streaming.OutputMode
 
 /**
- * Internal helper class to generate objects representing various [[OutputMode]]s,
+ * Internal helper class to generate objects representing various `OutputMode`s,
  */
 private[sql] object InternalOutputModes {
 

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala
----------------------------------------------------------------------
diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala
index a821d2c..c362104 100644
--- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala
+++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala
@@ -74,7 +74,7 @@ object Row {
  * It is invalid to use the native primitive interface to retrieve a value that is null, instead a
  * user must check `isNullAt` before attempting to retrieve a value that might be null.
  *
- * To create a new Row, use [[RowFactory.create()]] in Java or [[Row.apply()]] in Scala.
+ * To create a new Row, use `RowFactory.create()` in Java or `Row.apply()` in Scala.
  *
  * A [[Row]] object can be constructed by providing field values. Example:
  * {{{
@@ -343,7 +343,7 @@ trait Row extends Serializable {
   }
 
   /**
-   * Returns a Map(name -&gt; value) for the requested fieldNames
+   * Returns a Map consisting of names and values for the requested fieldNames
    * For primitive types if value is null it returns 'zero value' specific for primitive
    * ie. 0 for Int - use isNullAt to ensure that value is not null
    *

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala
----------------------------------------------------------------------
diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala
index cecad3b..4dc06fc 100644
--- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala
+++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DecimalType.scala
@@ -92,7 +92,8 @@ case class DecimalType(precision: Int, scale: Int) extends FractionalType {
   }
 
   /**
-   * The default size of a value of the DecimalType is 8 bytes (precision &lt;= 18) or 16 bytes.
+   * The default size of a value of the DecimalType is 8 bytes when precision is at most 18,
+   * and 16 bytes otherwise.
    */
   override def defaultSize: Int = if (precision <= Decimal.MAX_LONG_DIGITS) 8 else 16
 

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
index fa3b2b9..e99d786 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala
@@ -97,7 +97,7 @@ class TypedColumn[-T, U](
 }
 
 /**
- * A column that will be computed based on the data in a [[DataFrame]].
+ * A column that will be computed based on the data in a `DataFrame`.
  *
  * A new column is constructed based on the input columns present in a dataframe:
  *
@@ -801,7 +801,7 @@ class Column(val expr: Expression) extends Logging {
 
   /**
    * An expression that gets an item at position `ordinal` out of an array,
-   * or gets a value by key `key` in a [[MapType]].
+   * or gets a value by key `key` in a `MapType`.
    *
    * @group expr_ops
    * @since 1.3.0
@@ -809,7 +809,7 @@ class Column(val expr: Expression) extends Logging {
   def getItem(key: Any): Column = withExpr { UnresolvedExtractValue(expr, Literal(key)) }
 
   /**
-   * An expression that gets a field by name in a [[StructType]].
+   * An expression that gets a field by name in a `StructType`.
    *
    * @group expr_ops
    * @since 1.3.0
@@ -1195,92 +1195,92 @@ class Column(val expr: Expression) extends Logging {
 class ColumnName(name: String) extends Column(name) {
 
   /**
-   * Creates a new [[StructField]] of type boolean.
+   * Creates a new `StructField` of type boolean.
    * @since 1.3.0
    */
   def boolean: StructField = StructField(name, BooleanType)
 
   /**
-   * Creates a new [[StructField]] of type byte.
+   * Creates a new `StructField` of type byte.
    * @since 1.3.0
    */
   def byte: StructField = StructField(name, ByteType)
 
   /**
-   * Creates a new [[StructField]] of type short.
+   * Creates a new `StructField` of type short.
    * @since 1.3.0
    */
   def short: StructField = StructField(name, ShortType)
 
   /**
-   * Creates a new [[StructField]] of type int.
+   * Creates a new `StructField` of type int.
    * @since 1.3.0
    */
   def int: StructField = StructField(name, IntegerType)
 
   /**
-   * Creates a new [[StructField]] of type long.
+   * Creates a new `StructField` of type long.
    * @since 1.3.0
    */
   def long: StructField = StructField(name, LongType)
 
   /**
-   * Creates a new [[StructField]] of type float.
+   * Creates a new `StructField` of type float.
    * @since 1.3.0
    */
   def float: StructField = StructField(name, FloatType)
 
   /**
-   * Creates a new [[StructField]] of type double.
+   * Creates a new `StructField` of type double.
    * @since 1.3.0
    */
   def double: StructField = StructField(name, DoubleType)
 
   /**
-   * Creates a new [[StructField]] of type string.
+   * Creates a new `StructField` of type string.
    * @since 1.3.0
    */
   def string: StructField = StructField(name, StringType)
 
   /**
-   * Creates a new [[StructField]] of type date.
+   * Creates a new `StructField` of type date.
    * @since 1.3.0
    */
   def date: StructField = StructField(name, DateType)
 
   /**
-   * Creates a new [[StructField]] of type decimal.
+   * Creates a new `StructField` of type decimal.
    * @since 1.3.0
    */
   def decimal: StructField = StructField(name, DecimalType.USER_DEFAULT)
 
   /**
-   * Creates a new [[StructField]] of type decimal.
+   * Creates a new `StructField` of type decimal.
    * @since 1.3.0
    */
   def decimal(precision: Int, scale: Int): StructField =
     StructField(name, DecimalType(precision, scale))
 
   /**
-   * Creates a new [[StructField]] of type timestamp.
+   * Creates a new `StructField` of type timestamp.
    * @since 1.3.0
    */
   def timestamp: StructField = StructField(name, TimestampType)
 
   /**
-   * Creates a new [[StructField]] of type binary.
+   * Creates a new `StructField` of type binary.
    * @since 1.3.0
    */
   def binary: StructField = StructField(name, BinaryType)
 
   /**
-   * Creates a new [[StructField]] of type array.
+   * Creates a new `StructField` of type array.
    * @since 1.3.0
    */
   def array(dataType: DataType): StructField = StructField(name, ArrayType(dataType))
 
   /**
-   * Creates a new [[StructField]] of type map.
+   * Creates a new `StructField` of type map.
    * @since 1.3.0
    */
   def map(keyType: DataType, valueType: DataType): StructField =
@@ -1289,13 +1289,13 @@ class ColumnName(name: String) extends Column(name) {
   def map(mapType: MapType): StructField = StructField(name, mapType)
 
   /**
-   * Creates a new [[StructField]] of type struct.
+   * Creates a new `StructField` of type struct.
    * @since 1.3.0
    */
   def struct(fields: StructField*): StructField = struct(StructType(fields))
 
   /**
-   * Creates a new [[StructField]] of type struct.
+   * Creates a new `StructField` of type struct.
    * @since 1.3.0
    */
   def struct(structType: StructType): StructField = StructField(name, structType)

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
index 0d43f09..184c5a1 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
@@ -28,7 +28,7 @@ import org.apache.spark.sql.types._
 
 
 /**
- * Functionality for working with missing data in [[DataFrame]]s.
+ * Functionality for working with missing data in `DataFrame`s.
  *
  * @since 1.3.1
  */
@@ -36,14 +36,14 @@ import org.apache.spark.sql.types._
 final class DataFrameNaFunctions private[sql](df: DataFrame) {
 
   /**
-   * Returns a new [[DataFrame]] that drops rows containing any null or NaN values.
+   * Returns a new `DataFrame` that drops rows containing any null or NaN values.
    *
    * @since 1.3.1
    */
   def drop(): DataFrame = drop("any", df.columns)
 
   /**
-   * Returns a new [[DataFrame]] that drops rows containing null or NaN values.
+   * Returns a new `DataFrame` that drops rows containing null or NaN values.
    *
    * If `how` is "any", then drop rows containing any null or NaN values.
    * If `how` is "all", then drop rows only if every column is null or NaN for that row.
@@ -53,7 +53,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def drop(how: String): DataFrame = drop(how, df.columns)
 
   /**
-   * Returns a new [[DataFrame]] that drops rows containing any null or NaN values
+   * Returns a new `DataFrame` that drops rows containing any null or NaN values
    * in the specified columns.
    *
    * @since 1.3.1
@@ -61,7 +61,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def drop(cols: Array[String]): DataFrame = drop(cols.toSeq)
 
   /**
-   * (Scala-specific) Returns a new [[DataFrame]] that drops rows containing any null or NaN values
+   * (Scala-specific) Returns a new `DataFrame` that drops rows containing any null or NaN values
    * in the specified columns.
    *
    * @since 1.3.1
@@ -69,7 +69,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def drop(cols: Seq[String]): DataFrame = drop(cols.size, cols)
 
   /**
-   * Returns a new [[DataFrame]] that drops rows containing null or NaN values
+   * Returns a new `DataFrame` that drops rows containing null or NaN values
    * in the specified columns.
    *
    * If `how` is "any", then drop rows containing any null or NaN values in the specified columns.
@@ -80,7 +80,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def drop(how: String, cols: Array[String]): DataFrame = drop(how, cols.toSeq)
 
   /**
-   * (Scala-specific) Returns a new [[DataFrame]] that drops rows containing null or NaN values
+   * (Scala-specific) Returns a new `DataFrame` that drops rows containing null or NaN values
    * in the specified columns.
    *
    * If `how` is "any", then drop rows containing any null or NaN values in the specified columns.
@@ -97,7 +97,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   }
 
   /**
-   * Returns a new [[DataFrame]] that drops rows containing
+   * Returns a new `DataFrame` that drops rows containing
    * less than `minNonNulls` non-null and non-NaN values.
    *
    * @since 1.3.1
@@ -105,7 +105,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def drop(minNonNulls: Int): DataFrame = drop(minNonNulls, df.columns)
 
   /**
-   * Returns a new [[DataFrame]] that drops rows containing
+   * Returns a new `DataFrame` that drops rows containing
    * less than `minNonNulls` non-null and non-NaN values in the specified columns.
    *
    * @since 1.3.1
@@ -113,7 +113,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def drop(minNonNulls: Int, cols: Array[String]): DataFrame = drop(minNonNulls, cols.toSeq)
 
   /**
-   * (Scala-specific) Returns a new [[DataFrame]] that drops rows containing less than
+   * (Scala-specific) Returns a new `DataFrame` that drops rows containing less than
    * `minNonNulls` non-null and non-NaN values in the specified columns.
    *
    * @since 1.3.1
@@ -126,21 +126,21 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   }
 
   /**
-   * Returns a new [[DataFrame]] that replaces null or NaN values in numeric columns with `value`.
+   * Returns a new `DataFrame` that replaces null or NaN values in numeric columns with `value`.
    *
    * @since 1.3.1
    */
   def fill(value: Double): DataFrame = fill(value, df.columns)
 
   /**
-   * Returns a new [[DataFrame]] that replaces null values in string columns with `value`.
+   * Returns a new `DataFrame` that replaces null values in string columns with `value`.
    *
    * @since 1.3.1
    */
   def fill(value: String): DataFrame = fill(value, df.columns)
 
   /**
-   * Returns a new [[DataFrame]] that replaces null or NaN values in specified numeric columns.
+   * Returns a new `DataFrame` that replaces null or NaN values in specified numeric columns.
    * If a specified column is not a numeric column, it is ignored.
    *
    * @since 1.3.1
@@ -148,7 +148,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def fill(value: Double, cols: Array[String]): DataFrame = fill(value, cols.toSeq)
 
   /**
-   * (Scala-specific) Returns a new [[DataFrame]] that replaces null or NaN values in specified
+   * (Scala-specific) Returns a new `DataFrame` that replaces null or NaN values in specified
    * numeric columns. If a specified column is not a numeric column, it is ignored.
    *
    * @since 1.3.1
@@ -167,7 +167,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   }
 
   /**
-   * Returns a new [[DataFrame]] that replaces null values in specified string columns.
+   * Returns a new `DataFrame` that replaces null values in specified string columns.
    * If a specified column is not a string column, it is ignored.
    *
    * @since 1.3.1
@@ -175,7 +175,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def fill(value: String, cols: Array[String]): DataFrame = fill(value, cols.toSeq)
 
   /**
-   * (Scala-specific) Returns a new [[DataFrame]] that replaces null values in
+   * (Scala-specific) Returns a new `DataFrame` that replaces null values in
    * specified string columns. If a specified column is not a string column, it is ignored.
    *
    * @since 1.3.1
@@ -194,7 +194,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   }
 
   /**
-   * Returns a new [[DataFrame]] that replaces null values.
+   * Returns a new `DataFrame` that replaces null values.
    *
    * The key of the map is the column name, and the value of the map is the replacement value.
    * The value must be of the following type:
@@ -213,7 +213,7 @@ final class DataFrameNaFunctions private[sql](df: DataFrame) {
   def fill(valueMap: java.util.Map[String, Any]): DataFrame = fill0(valueMap.asScala.toSeq)
 
   /**
-   * (Scala-specific) Returns a new [[DataFrame]] that replaces null values.
+   * (Scala-specific) Returns a new `DataFrame` that replaces null values.
    *
    * The key of the map is the column name, and the value of the map is the replacement value.
    * The value must be of the following type: `Int`, `Long`, `Float`, `Double`, `String`, `Boolean`.

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala
index 5be9a99..1af2f9a 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameReader.scala
@@ -35,7 +35,7 @@ import org.apache.spark.sql.types.StructType
 
 /**
  * Interface used to load a [[Dataset]] from external storage systems (e.g. file systems,
- * key-value stores, etc). Use [[SparkSession.read]] to access this.
+ * key-value stores, etc). Use `SparkSession.read` to access this.
  *
  * @since 1.4.0
  */
@@ -116,7 +116,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads input in as a [[DataFrame]], for data sources that don't require a path (e.g. external
+   * Loads input in as a `DataFrame`, for data sources that don't require a path (e.g. external
    * key-value stores).
    *
    * @since 1.4.0
@@ -126,7 +126,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads input in as a [[DataFrame]], for data sources that require a path (e.g. data backed by
+   * Loads input in as a `DataFrame`, for data sources that require a path (e.g. data backed by
    * a local or distributed file system).
    *
    * @since 1.4.0
@@ -136,7 +136,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads input in as a [[DataFrame]], for data sources that support multiple paths.
+   * Loads input in as a `DataFrame`, for data sources that support multiple paths.
    * Only works if the source is a HadoopFsRelationProvider.
    *
    * @since 1.6.0
@@ -153,7 +153,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Construct a [[DataFrame]] representing the database table accessible via JDBC URL
+   * Construct a `DataFrame` representing the database table accessible via JDBC URL
    * url named table and connection properties.
    *
    * @since 1.4.0
@@ -163,7 +163,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Construct a [[DataFrame]] representing the database table accessible via JDBC URL
+   * Construct a `DataFrame` representing the database table accessible via JDBC URL
    * url named table. Partitions of the table will be retrieved in parallel based on the parameters
    * passed to this function.
    *
@@ -198,10 +198,10 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Construct a [[DataFrame]] representing the database table accessible via JDBC URL
+   * Construct a `DataFrame` representing the database table accessible via JDBC URL
    * url named table using connection properties. The `predicates` parameter gives a list
    * expressions suitable for inclusion in WHERE clauses; each one defines one partition
-   * of the [[DataFrame]].
+   * of the `DataFrame`.
    *
    * Don't create too many partitions in parallel on a large cluster; otherwise Spark might crash
    * your external database systems.
@@ -240,7 +240,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
 
   /**
    * Loads a JSON file (<a href="http://jsonlines.org/">JSON Lines text format or
-   * newline-delimited JSON</a>) and returns the result as a [[DataFrame]].
+   * newline-delimited JSON</a>) and returns the result as a `DataFrame`.
    * See the documentation on the overloaded `json()` method with varargs for more details.
    *
    * @since 1.4.0
@@ -252,7 +252,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
 
   /**
    * Loads a JSON file (<a href="http://jsonlines.org/">JSON Lines text format or
-   * newline-delimited JSON</a>) and returns the result as a [[DataFrame]].
+   * newline-delimited JSON</a>) and returns the result as a `DataFrame`.
    *
    * This function goes through the input once to determine the input schema. If you know the
    * schema in advance, use the version that specifies the schema to avoid the extra scan.
@@ -299,7 +299,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   /**
    * Loads a `JavaRDD[String]` storing JSON objects (<a href="http://jsonlines.org/">JSON
    * Lines text format or newline-delimited JSON</a>) and returns the result as
-   * a [[DataFrame]].
+   * a `DataFrame`.
    *
    * Unless the schema is specified using [[schema]] function, this function goes through the
    * input once to determine the input schema.
@@ -311,7 +311,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
 
   /**
    * Loads an `RDD[String]` storing JSON objects (<a href="http://jsonlines.org/">JSON Lines
-   * text format or newline-delimited JSON</a>) and returns the result as a [[DataFrame]].
+   * text format or newline-delimited JSON</a>) and returns the result as a `DataFrame`.
    *
    * Unless the schema is specified using [[schema]] function, this function goes through the
    * input once to determine the input schema.
@@ -341,7 +341,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads a CSV file and returns the result as a [[DataFrame]]. See the documentation on the
+   * Loads a CSV file and returns the result as a `DataFrame`. See the documentation on the
    * other overloaded `csv()` method for more details.
    *
    * @since 2.0.0
@@ -352,7 +352,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads a CSV file and returns the result as a [[DataFrame]].
+   * Loads a CSV file and returns the result as a `DataFrame`.
    *
    * This function will go through the input once to determine the input schema if `inferSchema`
    * is enabled. To avoid going through the entire data once, disable `inferSchema` option or
@@ -392,7 +392,6 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
    * <li>`timestampFormat` (default `yyyy-MM-dd'T'HH:mm:ss.SSSZZ`): sets the string that
    * indicates a timestamp format. Custom date formats follow the formats at
    * `java.text.SimpleDateFormat`. This applies to timestamp type.</li>
-   * `java.sql.Timestamp.valueOf()` and `java.sql.Date.valueOf()` or ISO 8601 format.</li>
    * <li>`maxColumns` (default `20480`): defines a hard limit of how many columns
    * a record can have.</li>
    * <li>`maxCharsPerColumn` (default `-1`): defines the maximum number of characters allowed
@@ -415,7 +414,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   def csv(paths: String*): DataFrame = format("csv").load(paths : _*)
 
   /**
-   * Loads a Parquet file, returning the result as a [[DataFrame]]. See the documentation
+   * Loads a Parquet file, returning the result as a `DataFrame`. See the documentation
    * on the other overloaded `parquet()` method for more details.
    *
    * @since 2.0.0
@@ -426,7 +425,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads a Parquet file, returning the result as a [[DataFrame]].
+   * Loads a Parquet file, returning the result as a `DataFrame`.
    *
    * You can set the following Parquet-specific option(s) for reading Parquet files:
    * <ul>
@@ -442,7 +441,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads an ORC file and returns the result as a [[DataFrame]].
+   * Loads an ORC file and returns the result as a `DataFrame`.
    *
    * @param path input path
    * @since 1.5.0
@@ -454,7 +453,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads an ORC file and returns the result as a [[DataFrame]].
+   * Loads an ORC file and returns the result as a `DataFrame`.
    *
    * @param paths input paths
    * @since 2.0.0
@@ -464,7 +463,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   def orc(paths: String*): DataFrame = format("orc").load(paths: _*)
 
   /**
-   * Returns the specified table as a [[DataFrame]].
+   * Returns the specified table as a `DataFrame`.
    *
    * @since 1.4.0
    */
@@ -475,7 +474,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads text files and returns a [[DataFrame]] whose schema starts with a string column named
+   * Loads text files and returns a `DataFrame` whose schema starts with a string column named
    * "value", and followed by partitioned columns if there are any. See the documentation on
    * the other overloaded `text()` method for more details.
    *
@@ -487,7 +486,7 @@ class DataFrameReader private[sql](sparkSession: SparkSession) extends Logging {
   }
 
   /**
-   * Loads text files and returns a [[DataFrame]] whose schema starts with a string column named
+   * Loads text files and returns a `DataFrame` whose schema starts with a string column named
    * "value", and followed by partitioned columns if there are any.
    *
    * Each line in the text files is a new row in the resulting DataFrame. For example:

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
index a9a861c..89c3a74 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameStatFunctions.scala
@@ -28,7 +28,7 @@ import org.apache.spark.sql.types._
 import org.apache.spark.util.sketch.{BloomFilter, CountMinSketch}
 
 /**
- * Statistic functions for [[DataFrame]]s.
+ * Statistic functions for `DataFrame`s.
  *
  * @since 1.4.0
  */
@@ -44,7 +44,9 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * of `x` is close to (p * N).
    * More precisely,
    *
-   *   floor((p - err) * N) <= rank(x) <= ceil((p + err) * N).
+   * {{{
+   *   floor((p - err) * N) <= rank(x) <= ceil((p + err) * N)
+   * }}}
    *
    * This method implements a variation of the Greenwald-Khanna algorithm (with some speed
    * optimizations).
@@ -55,7 +57,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * @param probabilities a list of quantile probabilities
    *   Each number must belong to [0, 1].
    *   For example 0 is the minimum, 0.5 is the median, 1 is the maximum.
-   * @param relativeError The relative target precision to achieve (>= 0).
+   * @param relativeError The relative target precision to achieve (greater or equal to 0).
    *   If set to zero, the exact quantiles are computed, which could be very expensive.
    *   Note that values greater than 1 are accepted but give the same result as 1.
    * @return the approximate quantiles at the given probabilities
@@ -189,7 +191,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * The `support` should be greater than 1e-4.
    *
    * This function is meant for exploratory data analysis, as we make no guarantee about the
-   * backward compatibility of the schema of the resulting [[DataFrame]].
+   * backward compatibility of the schema of the resulting `DataFrame`.
    *
    * @param cols the names of the columns to search frequent items in.
    * @param support The minimum frequency for an item to be considered `frequent`. Should be greater
@@ -236,7 +238,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * Uses a `default` support of 1%.
    *
    * This function is meant for exploratory data analysis, as we make no guarantee about the
-   * backward compatibility of the schema of the resulting [[DataFrame]].
+   * backward compatibility of the schema of the resulting `DataFrame`.
    *
    * @param cols the names of the columns to search frequent items in.
    * @return A Local DataFrame with the Array of frequent items for each column.
@@ -254,7 +256,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * and Papadimitriou.
    *
    * This function is meant for exploratory data analysis, as we make no guarantee about the
-   * backward compatibility of the schema of the resulting [[DataFrame]].
+   * backward compatibility of the schema of the resulting `DataFrame`.
    *
    * @param cols the names of the columns to search frequent items in.
    * @return A Local DataFrame with the Array of frequent items for each column.
@@ -299,7 +301,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * Uses a `default` support of 1%.
    *
    * This function is meant for exploratory data analysis, as we make no guarantee about the
-   * backward compatibility of the schema of the resulting [[DataFrame]].
+   * backward compatibility of the schema of the resulting `DataFrame`.
    *
    * @param cols the names of the columns to search frequent items in.
    * @return A Local DataFrame with the Array of frequent items for each column.
@@ -317,7 +319,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    *                  its fraction as zero.
    * @param seed random seed
    * @tparam T stratum type
-   * @return a new [[DataFrame]] that represents the stratified sample
+   * @return a new `DataFrame` that represents the stratified sample
    *
    * {{{
    *    val df = spark.createDataFrame(Seq((1, 1), (1, 2), (2, 1), (2, 1), (2, 3), (3, 2),
@@ -354,7 +356,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    *                  its fraction as zero.
    * @param seed random seed
    * @tparam T stratum type
-   * @return a new [[DataFrame]] that represents the stratified sample
+   * @return a new `DataFrame` that represents the stratified sample
    *
    * @since 1.5.0
    */
@@ -369,7 +371,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * @param depth depth of the sketch
    * @param width width of the sketch
    * @param seed random seed
-   * @return a [[CountMinSketch]] over column `colName`
+   * @return a `CountMinSketch` over column `colName`
    * @since 2.0.0
    */
   def countMinSketch(colName: String, depth: Int, width: Int, seed: Int): CountMinSketch = {
@@ -383,7 +385,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * @param eps relative error of the sketch
    * @param confidence confidence of the sketch
    * @param seed random seed
-   * @return a [[CountMinSketch]] over column `colName`
+   * @return a `CountMinSketch` over column `colName`
    * @since 2.0.0
    */
   def countMinSketch(
@@ -398,7 +400,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * @param depth depth of the sketch
    * @param width width of the sketch
    * @param seed random seed
-   * @return a [[CountMinSketch]] over column `colName`
+   * @return a `CountMinSketch` over column `colName`
    * @since 2.0.0
    */
   def countMinSketch(col: Column, depth: Int, width: Int, seed: Int): CountMinSketch = {
@@ -412,7 +414,7 @@ final class DataFrameStatFunctions private[sql](df: DataFrame) {
    * @param eps relative error of the sketch
    * @param confidence confidence of the sketch
    * @param seed random seed
-   * @return a [[CountMinSketch]] over column `colName`
+   * @return a `CountMinSketch` over column `colName`
    * @since 2.0.0
    */
   def countMinSketch(col: Column, eps: Double, confidence: Double, seed: Int): CountMinSketch = {

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
index 8294e41..fa8e8cb 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameWriter.scala
@@ -32,7 +32,7 @@ import org.apache.spark.sql.types.StructType
 
 /**
  * Interface used to write a [[Dataset]] to external storage systems (e.g. file systems,
- * key-value stores, etc). Use [[Dataset.write]] to access this.
+ * key-value stores, etc). Use `Dataset.write` to access this.
  *
  * @since 1.4.0
  */
@@ -189,7 +189,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] at the specified path.
+   * Saves the content of the `DataFrame` at the specified path.
    *
    * @since 1.4.0
    */
@@ -199,7 +199,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] as the specified table.
+   * Saves the content of the `DataFrame` as the specified table.
    *
    * @since 1.4.0
    */
@@ -215,8 +215,8 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
     dataSource.write(mode, df)
   }
   /**
-   * Inserts the content of the [[DataFrame]] to the specified table. It requires that
-   * the schema of the [[DataFrame]] is the same as the schema of the table.
+   * Inserts the content of the `DataFrame` to the specified table. It requires that
+   * the schema of the `DataFrame` is the same as the schema of the table.
    *
    * @note Unlike `saveAsTable`, `insertInto` ignores the column names and just uses position-based
    * resolution. For example:
@@ -322,15 +322,15 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] as the specified table.
+   * Saves the content of the `DataFrame` as the specified table.
    *
    * In the case the table already exists, behavior of this function depends on the
    * save mode, specified by the `mode` function (default to throwing an exception).
-   * When `mode` is `Overwrite`, the schema of the [[DataFrame]] does not need to be
+   * When `mode` is `Overwrite`, the schema of the `DataFrame` does not need to be
    * the same as that of the existing table.
    *
    * When `mode` is `Append`, if there is an existing table, we will use the format and options of
-   * the existing table. The column order in the schema of the [[DataFrame]] doesn't need to be same
+   * the existing table. The column order in the schema of the `DataFrame` doesn't need to be same
    * as that of the existing table. Unlike `insertInto`, `saveAsTable` will use the column names to
    * find the correct column positions. For example:
    *
@@ -346,7 +346,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
    *    +---+---+
    * }}}
    *
-   * When the DataFrame is created from a non-partitioned [[HadoopFsRelation]] with a single input
+   * When the DataFrame is created from a non-partitioned `HadoopFsRelation` with a single input
    * path, and the data source provider can be mapped to an existing Hive builtin SerDe (i.e. ORC
    * and Parquet), the table is persisted in a Hive compatible format, which means other systems
    * like Hive will be able to read this table. Otherwise, the table is persisted in a Spark SQL
@@ -406,7 +406,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] to an external database table via JDBC. In the case the
+   * Saves the content of the `DataFrame` to an external database table via JDBC. In the case the
    * table already exists in the external database, behavior of this function depends on the
    * save mode, specified by the `mode` function (default to throwing an exception).
    *
@@ -447,7 +447,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] in JSON format (<a href="http://jsonlines.org/">
+   * Saves the content of the `DataFrame` in JSON format (<a href="http://jsonlines.org/">
    * JSON Lines text format or newline-delimited JSON</a>) at the specified path.
    * This is equivalent to:
    * {{{
@@ -474,7 +474,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] in Parquet format at the specified path.
+   * Saves the content of the `DataFrame` in Parquet format at the specified path.
    * This is equivalent to:
    * {{{
    *   format("parquet").save(path)
@@ -495,7 +495,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] in ORC format at the specified path.
+   * Saves the content of the `DataFrame` in ORC format at the specified path.
    * This is equivalent to:
    * {{{
    *   format("orc").save(path)
@@ -516,7 +516,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] in a text file at the specified path.
+   * Saves the content of the `DataFrame` in a text file at the specified path.
    * The DataFrame must have only one column that is of string type.
    * Each row becomes a new line in the output file. For example:
    * {{{
@@ -541,7 +541,7 @@ final class DataFrameWriter[T] private[sql](ds: Dataset[T]) {
   }
 
   /**
-   * Saves the content of the [[DataFrame]] in CSV format at the specified path.
+   * Saves the content of the `DataFrame` in CSV format at the specified path.
    * This is equivalent to:
    * {{{
    *   format("csv").save(path)

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
index 7ba6ffc..fcc02e5 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
@@ -68,7 +68,7 @@ private[sql] object Dataset {
 /**
  * A Dataset is a strongly typed collection of domain-specific objects that can be transformed
  * in parallel using functional or relational operations. Each Dataset also has an untyped view
- * called a [[DataFrame]], which is a Dataset of [[Row]].
+ * called a `DataFrame`, which is a Dataset of [[Row]].
  *
  * Operations available on Datasets are divided into transformations and actions. Transformations
  * are the ones that produce new Datasets, and actions are the ones that trigger computation and
@@ -363,7 +363,7 @@ class Dataset[T] private[sql](
    *  - When `U` is a tuple, the columns will be be mapped by ordinal (i.e. the first column will
    *    be assigned to `_1`).
    *  - When `U` is a primitive type (i.e. String, Int, etc), then the first column of the
-   *    [[DataFrame]] will be used.
+   *    `DataFrame` will be used.
    *
    * If the schema of the Dataset does not match the desired `U` type, you can use `select`
    * along with `alias` or `as` to rearrange or rename as required.
@@ -377,7 +377,7 @@ class Dataset[T] private[sql](
 
   /**
    * Converts this strongly typed collection of data to generic `DataFrame` with columns renamed.
-   * This can be quite convenient in conversion from an RDD of tuples into a [[DataFrame]] with
+   * This can be quite convenient in conversion from an RDD of tuples into a `DataFrame` with
    * meaningful names. For example:
    * {{{
    *   val rdd: RDD[(Int, String)] = ...
@@ -472,8 +472,8 @@ class Dataset[T] private[sql](
   /**
    * Returns true if this Dataset contains one or more sources that continuously
    * return data as it arrives. A Dataset that reads data from a streaming source
-   * must be executed as a [[StreamingQuery]] using the `start()` method in
-   * [[DataStreamWriter]]. Methods that return a single answer, e.g. `count()` or
+   * must be executed as a `StreamingQuery` using the `start()` method in
+   * `DataStreamWriter`. Methods that return a single answer, e.g. `count()` or
    * `collect()`, will throw an [[AnalysisException]] when there is a streaming
    * source present.
    *
@@ -685,7 +685,7 @@ class Dataset[T] private[sql](
   def stat: DataFrameStatFunctions = new DataFrameStatFunctions(toDF())
 
   /**
-   * Join with another [[DataFrame]].
+   * Join with another `DataFrame`.
    *
    * Behaves as an INNER JOIN and requires a subsequent join predicate.
    *
@@ -699,7 +699,7 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Inner equi-join with another [[DataFrame]] using the given column.
+   * Inner equi-join with another `DataFrame` using the given column.
    *
    * Different from other join functions, the join column will only appear once in the output,
    * i.e. similar to SQL's `JOIN USING` syntax.
@@ -713,7 +713,7 @@ class Dataset[T] private[sql](
    * @param usingColumn Name of the column to join on. This column must exist on both sides.
    *
    * @note If you perform a self-join using this function without aliasing the input
-   * [[DataFrame]]s, you will NOT be able to reference any columns after the join, since
+   * `DataFrame`s, you will NOT be able to reference any columns after the join, since
    * there is no way to disambiguate which side of the join you would like to reference.
    *
    * @group untypedrel
@@ -724,7 +724,7 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Inner equi-join with another [[DataFrame]] using the given columns.
+   * Inner equi-join with another `DataFrame` using the given columns.
    *
    * Different from other join functions, the join columns will only appear once in the output,
    * i.e. similar to SQL's `JOIN USING` syntax.
@@ -738,7 +738,7 @@ class Dataset[T] private[sql](
    * @param usingColumns Names of the columns to join on. This columns must exist on both sides.
    *
    * @note If you perform a self-join using this function without aliasing the input
-   * [[DataFrame]]s, you will NOT be able to reference any columns after the join, since
+   * `DataFrame`s, you will NOT be able to reference any columns after the join, since
    * there is no way to disambiguate which side of the join you would like to reference.
    *
    * @group untypedrel
@@ -749,7 +749,7 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Equi-join with another [[DataFrame]] using the given columns.
+   * Equi-join with another `DataFrame` using the given columns.
    *
    * Different from other join functions, the join columns will only appear once in the output,
    * i.e. similar to SQL's `JOIN USING` syntax.
@@ -759,7 +759,7 @@ class Dataset[T] private[sql](
    * @param joinType One of: `inner`, `outer`, `left_outer`, `right_outer`, `leftsemi`.
    *
    * @note If you perform a self-join using this function without aliasing the input
-   * [[DataFrame]]s, you will NOT be able to reference any columns after the join, since
+   * `DataFrame`s, you will NOT be able to reference any columns after the join, since
    * there is no way to disambiguate which side of the join you would like to reference.
    *
    * @group untypedrel
@@ -782,7 +782,7 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Inner join with another [[DataFrame]], using the given join expression.
+   * Inner join with another `DataFrame`, using the given join expression.
    *
    * {{{
    *   // The following two are equivalent:
@@ -796,7 +796,7 @@ class Dataset[T] private[sql](
   def join(right: Dataset[_], joinExprs: Column): DataFrame = join(right, joinExprs, "inner")
 
   /**
-   * Join with another [[DataFrame]], using the given join expression. The following performs
+   * Join with another `DataFrame`, using the given join expression. The following performs
    * a full outer join between `df1` and `df2`.
    *
    * {{{
@@ -860,7 +860,7 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Explicit cartesian join with another [[DataFrame]].
+   * Explicit cartesian join with another `DataFrame`.
    *
    * @param right Right side of the join operation.
    *
@@ -875,7 +875,7 @@ class Dataset[T] private[sql](
 
   /**
    * :: Experimental ::
-   * Joins this Dataset returning a [[Tuple2]] for each pair where `condition` evaluates to
+   * Joins this Dataset returning a `Tuple2` for each pair where `condition` evaluates to
    * true.
    *
    * This is similar to the relation `join` function with one important difference in the
@@ -956,7 +956,7 @@ class Dataset[T] private[sql](
 
   /**
    * :: Experimental ::
-   * Using inner equi-join to join this Dataset returning a [[Tuple2]] for each pair
+   * Using inner equi-join to join this Dataset returning a `Tuple2` for each pair
    * where `condition` evaluates to true.
    *
    * @param other Right side of the join.
@@ -2232,7 +2232,7 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Returns a new [[DataFrame]] that contains the result of applying a serialized R function
+   * Returns a new `DataFrame` that contains the result of applying a serialized R function
    * `func` to each partition.
    */
   private[sql] def mapPartitionsInR(
@@ -2446,7 +2446,7 @@ class Dataset[T] private[sql](
 
   /**
    * Returns a new Dataset that has exactly `numPartitions` partitions.
-   * Similar to coalesce defined on an [[RDD]], this operation results in a narrow dependency, e.g.
+   * Similar to coalesce defined on an `RDD`, this operation results in a narrow dependency, e.g.
    * if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of
    * the 100 new partitions will claim 10 of the current partitions.
    *
@@ -2536,7 +2536,7 @@ class Dataset[T] private[sql](
   def unpersist(): this.type = unpersist(blocking = false)
 
   /**
-   * Represents the content of the Dataset as an [[RDD]] of [[T]].
+   * Represents the content of the Dataset as an `RDD` of [[T]].
    *
    * @group basic
    * @since 1.6.0
@@ -2550,14 +2550,14 @@ class Dataset[T] private[sql](
   }
 
   /**
-   * Returns the content of the Dataset as a [[JavaRDD]] of [[T]]s.
+   * Returns the content of the Dataset as a `JavaRDD` of [[T]]s.
    * @group basic
    * @since 1.6.0
    */
   def toJavaRDD: JavaRDD[T] = rdd.toJavaRDD()
 
   /**
-   * Returns the content of the Dataset as a [[JavaRDD]] of [[T]]s.
+   * Returns the content of the Dataset as a `JavaRDD` of [[T]]s.
    * @group basic
    * @since 1.6.0
    */

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala b/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
index 1163035..b94ad59 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/ForeachWriter.scala
@@ -18,11 +18,10 @@
 package org.apache.spark.sql
 
 import org.apache.spark.annotation.{Experimental, InterfaceStability}
-import org.apache.spark.sql.streaming.StreamingQuery
 
 /**
  * :: Experimental ::
- * A class to consume data generated by a [[StreamingQuery]]. Typically this is used to send the
+ * A class to consume data generated by a `StreamingQuery`. Typically this is used to send the
  * generated data to external systems. Each partition will use a new deserialized instance, so you
  * usually should do all the initialization (e.g. opening a connection or initiating a transaction)
  * in the `open` method.

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala
index 31ce8eb..395d709 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/KeyValueGroupedDataset.scala
@@ -131,7 +131,7 @@ class KeyValueGroupedDataset[K, V] private[sql](
    * This function does not support partial aggregation, and as a result requires shuffling all
    * the data in the [[Dataset]]. If an application intends to perform an aggregation over each
    * key, it is best to use the reduce function or an
-   * [[org.apache.spark.sql.expressions#Aggregator Aggregator]].
+   * `org.apache.spark.sql.expressions#Aggregator`.
    *
    * Internally, the implementation will spill to disk if any given group is too large to fit into
    * memory.  However, users must take care to avoid materializing the whole iterator for a group
@@ -160,7 +160,7 @@ class KeyValueGroupedDataset[K, V] private[sql](
    * This function does not support partial aggregation, and as a result requires shuffling all
    * the data in the [[Dataset]]. If an application intends to perform an aggregation over each
    * key, it is best to use the reduce function or an
-   * [[org.apache.spark.sql.expressions#Aggregator Aggregator]].
+   * `org.apache.spark.sql.expressions#Aggregator`.
    *
    * Internally, the implementation will spill to disk if any given group is too large to fit into
    * memory.  However, users must take care to avoid materializing the whole iterator for a group
@@ -182,7 +182,7 @@ class KeyValueGroupedDataset[K, V] private[sql](
    * This function does not support partial aggregation, and as a result requires shuffling all
    * the data in the [[Dataset]]. If an application intends to perform an aggregation over each
    * key, it is best to use the reduce function or an
-   * [[org.apache.spark.sql.expressions#Aggregator Aggregator]].
+   * `org.apache.spark.sql.expressions#Aggregator`.
    *
    * Internally, the implementation will spill to disk if any given group is too large to fit into
    * memory.  However, users must take care to avoid materializing the whole iterator for a group
@@ -205,7 +205,7 @@ class KeyValueGroupedDataset[K, V] private[sql](
    * This function does not support partial aggregation, and as a result requires shuffling all
    * the data in the [[Dataset]]. If an application intends to perform an aggregation over each
    * key, it is best to use the reduce function or an
-   * [[org.apache.spark.sql.expressions#Aggregator Aggregator]].
+   * `org.apache.spark.sql.expressions#Aggregator`.
    *
    * Internally, the implementation will spill to disk if any given group is too large to fit into
    * memory.  However, users must take care to avoid materializing the whole iterator for a group

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/RelationalGroupedDataset.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/RelationalGroupedDataset.scala b/sql/core/src/main/scala/org/apache/spark/sql/RelationalGroupedDataset.scala
index f019d1e..0fe8d87 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/RelationalGroupedDataset.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/RelationalGroupedDataset.scala
@@ -33,7 +33,7 @@ import org.apache.spark.sql.types.NumericType
 import org.apache.spark.sql.types.StructType
 
 /**
- * A set of methods for aggregations on a [[DataFrame]], created by [[Dataset.groupBy]].
+ * A set of methods for aggregations on a `DataFrame`, created by `Dataset.groupBy`.
  *
  * The main method is the agg function, which has multiple variants. This class also contains
  * convenience some first order statistics such as mean, sum for convenience.
@@ -129,7 +129,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * (Scala-specific) Compute aggregates by specifying the column names and
-   * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns.
+   * aggregate methods. The resulting `DataFrame` will also contain the grouping columns.
    *
    * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`.
    * {{{
@@ -150,7 +150,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * (Scala-specific) Compute aggregates by specifying a map from column name to
-   * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns.
+   * aggregate methods. The resulting `DataFrame` will also contain the grouping columns.
    *
    * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`.
    * {{{
@@ -171,7 +171,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * (Java-specific) Compute aggregates by specifying a map from column name to
-   * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns.
+   * aggregate methods. The resulting `DataFrame` will also contain the grouping columns.
    *
    * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`.
    * {{{
@@ -228,7 +228,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * Count the number of rows for each group.
-   * The resulting [[DataFrame]] will also contain the grouping columns.
+   * The resulting `DataFrame` will also contain the grouping columns.
    *
    * @since 1.3.0
    */
@@ -236,7 +236,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * Compute the average value for each numeric columns for each group. This is an alias for `avg`.
-   * The resulting [[DataFrame]] will also contain the grouping columns.
+   * The resulting `DataFrame` will also contain the grouping columns.
    * When specified columns are given, only compute the average values for them.
    *
    * @since 1.3.0
@@ -248,7 +248,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * Compute the max value for each numeric columns for each group.
-   * The resulting [[DataFrame]] will also contain the grouping columns.
+   * The resulting `DataFrame` will also contain the grouping columns.
    * When specified columns are given, only compute the max values for them.
    *
    * @since 1.3.0
@@ -260,7 +260,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * Compute the mean value for each numeric columns for each group.
-   * The resulting [[DataFrame]] will also contain the grouping columns.
+   * The resulting `DataFrame` will also contain the grouping columns.
    * When specified columns are given, only compute the mean values for them.
    *
    * @since 1.3.0
@@ -272,7 +272,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * Compute the min value for each numeric column for each group.
-   * The resulting [[DataFrame]] will also contain the grouping columns.
+   * The resulting `DataFrame` will also contain the grouping columns.
    * When specified columns are given, only compute the min values for them.
    *
    * @since 1.3.0
@@ -284,7 +284,7 @@ class RelationalGroupedDataset protected[sql](
 
   /**
    * Compute the sum for each numeric columns for each group.
-   * The resulting [[DataFrame]] will also contain the grouping columns.
+   * The resulting `DataFrame` will also contain the grouping columns.
    * When specified columns are given, only compute the sum for them.
    *
    * @since 1.3.0
@@ -295,7 +295,7 @@ class RelationalGroupedDataset protected[sql](
   }
 
   /**
-   * Pivots a column of the current [[DataFrame]] and perform the specified aggregation.
+   * Pivots a column of the current `DataFrame` and perform the specified aggregation.
    * There are two versions of pivot function: one that requires the caller to specify the list
    * of distinct values to pivot on, and one that does not. The latter is more concise but less
    * efficient, because Spark needs to first compute the list of distinct values internally.
@@ -335,7 +335,7 @@ class RelationalGroupedDataset protected[sql](
   }
 
   /**
-   * Pivots a column of the current [[DataFrame]] and perform the specified aggregation.
+   * Pivots a column of the current `DataFrame` and perform the specified aggregation.
    * There are two versions of pivot function: one that requires the caller to specify the list
    * of distinct values to pivot on, and one that does not. The latter is more concise but less
    * efficient, because Spark needs to first compute the list of distinct values internally.
@@ -367,7 +367,7 @@ class RelationalGroupedDataset protected[sql](
   }
 
   /**
-   * Pivots a column of the current [[DataFrame]] and perform the specified aggregation.
+   * Pivots a column of the current `DataFrame` and perform the specified aggregation.
    * There are two versions of pivot function: one that requires the caller to specify the list
    * of distinct values to pivot on, and one that does not. The latter is more concise but less
    * efficient, because Spark needs to first compute the list of distinct values internally.
@@ -392,12 +392,12 @@ class RelationalGroupedDataset protected[sql](
    * Applies the given serialized R function `func` to each group of data. For each unique group,
    * the function will be passed the group key and an iterator that contains all of the elements in
    * the group. The function can return an iterator containing elements of an arbitrary type which
-   * will be returned as a new [[DataFrame]].
+   * will be returned as a new `DataFrame`.
    *
    * This function does not support partial aggregation, and as a result requires shuffling all
    * the data in the [[Dataset]]. If an application intends to perform an aggregation over each
    * key, it is best to use the reduce function or an
-   * [[org.apache.spark.sql.expressions#Aggregator Aggregator]].
+   * `org.apache.spark.sql.expressions#Aggregator`.
    *
    * Internally, the implementation will spill to disk if any given group is too large to fit into
    * memory.  However, users must take care to avoid materializing the whole iterator for a group

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/RuntimeConfig.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/RuntimeConfig.scala b/sql/core/src/main/scala/org/apache/spark/sql/RuntimeConfig.scala
index 9108d19..edfcd7d 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/RuntimeConfig.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/RuntimeConfig.scala
@@ -23,7 +23,7 @@ import org.apache.spark.sql.internal.{SQLConf, StaticSQLConf}
 
 
 /**
- * Runtime configuration interface for Spark. To access this, use [[SparkSession.conf]].
+ * Runtime configuration interface for Spark. To access this, use `SparkSession.conf`.
  *
  * Options set here are automatically propagated to the Hadoop configuration during I/O.
  *
@@ -65,7 +65,8 @@ class RuntimeConfig private[sql](sqlConf: SQLConf = new SQLConf) {
   /**
    * Returns the value of Spark runtime configuration property for the given key.
    *
-   * @throws NoSuchElementException if the key is not set and does not have a default value
+   * @throws java.util.NoSuchElementException if the key is not set and does not have a default
+   *                                          value
    * @since 2.0.0
    */
   @throws[NoSuchElementException]("if the key is not set")

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
index 858fa4c..6554359 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
@@ -84,7 +84,7 @@ class SQLContext private[sql](val sparkSession: SparkSession)
 
   /**
    * Returns a [[SQLContext]] as new session, with separated SQL configurations, temporary
-   * tables, registered functions, but sharing the same [[SparkContext]], cached data and
+   * tables, registered functions, but sharing the same `SparkContext`, cached data and
    * other things.
    *
    * @since 1.6.0
@@ -883,7 +883,7 @@ class SQLContext private[sql](val sparkSession: SparkSession)
   }
 
   /**
-   * Loads an JavaRDD<String> storing JSON objects (one object per record) and applies the given
+   * Loads an JavaRDD[String] storing JSON objects (one object per record) and applies the given
    * schema, returning the result as a `DataFrame`.
    *
    * @group specificdata

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala b/sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala
index 71b1880..08d74ac 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala
@@ -93,7 +93,7 @@ class SparkSession private(
    * ----------------------- */
 
   /**
-   * State shared across sessions, including the [[SparkContext]], cached data, listener,
+   * State shared across sessions, including the `SparkContext`, cached data, listener,
    * and a catalog that interacts with external systems.
    */
   @transient
@@ -125,7 +125,7 @@ class SparkSession private(
    *
    * This is the interface through which the user can get and set all Spark and Hadoop
    * configurations that are relevant to Spark SQL. When getting the value of a config,
-   * this defaults to the value set in the underlying [[SparkContext]], if any.
+   * this defaults to the value set in the underlying `SparkContext`, if any.
    *
    * @since 2.0.0
    */
@@ -189,8 +189,8 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Returns a [[StreamingQueryManager]] that allows managing all the
-   * [[StreamingQuery StreamingQueries]] active on `this`.
+   * Returns a `StreamingQueryManager` that allows managing all the
+   * `StreamingQuery`s active on `this`.
    *
    * @since 2.0.0
    */
@@ -200,9 +200,9 @@ class SparkSession private(
 
   /**
    * Start a new session with isolated SQL configurations, temporary tables, registered
-   * functions are isolated, but sharing the underlying [[SparkContext]] and cached data.
+   * functions are isolated, but sharing the underlying `SparkContext` and cached data.
    *
-   * @note Other than the [[SparkContext]], all shared state is initialized lazily.
+   * @note Other than the `SparkContext`, all shared state is initialized lazily.
    * This method will force the initialization of the shared state to ensure that parent
    * and child sessions are set up with the same shared state. If the underlying catalog
    * implementation is Hive, this will initialize the metastore, which may take some time.
@@ -219,7 +219,7 @@ class SparkSession private(
    * --------------------------------- */
 
   /**
-   * Returns a [[DataFrame]] with no rows or columns.
+   * Returns a `DataFrame` with no rows or columns.
    *
    * @since 2.0.0
    */
@@ -243,7 +243,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Creates a [[DataFrame]] from an RDD of Product (e.g. case classes, tuples).
+   * Creates a `DataFrame` from an RDD of Product (e.g. case classes, tuples).
    *
    * @since 2.0.0
    */
@@ -257,7 +257,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Creates a [[DataFrame]] from a local Seq of Product.
+   * Creates a `DataFrame` from a local Seq of Product.
    *
    * @since 2.0.0
    */
@@ -272,7 +272,7 @@ class SparkSession private(
 
   /**
    * :: DeveloperApi ::
-   * Creates a [[DataFrame]] from an [[RDD]] containing [[Row]]s using the given schema.
+   * Creates a `DataFrame` from an `RDD` containing [[Row]]s using the given schema.
    * It is important to make sure that the structure of every [[Row]] of the provided RDD matches
    * the provided schema. Otherwise, there will be runtime exception.
    * Example:
@@ -309,7 +309,7 @@ class SparkSession private(
 
   /**
    * :: DeveloperApi ::
-   * Creates a [[DataFrame]] from a [[JavaRDD]] containing [[Row]]s using the given schema.
+   * Creates a `DataFrame` from a `JavaRDD` containing [[Row]]s using the given schema.
    * It is important to make sure that the structure of every [[Row]] of the provided RDD matches
    * the provided schema. Otherwise, there will be runtime exception.
    *
@@ -323,7 +323,7 @@ class SparkSession private(
 
   /**
    * :: DeveloperApi ::
-   * Creates a [[DataFrame]] from a [[java.util.List]] containing [[Row]]s using the given schema.
+   * Creates a `DataFrame` from a [[java.util.List]] containing [[Row]]s using the given schema.
    * It is important to make sure that the structure of every [[Row]] of the provided List matches
    * the provided schema. Otherwise, there will be runtime exception.
    *
@@ -381,7 +381,7 @@ class SparkSession private(
   }
 
   /**
-   * Convert a [[BaseRelation]] created for external data sources into a [[DataFrame]].
+   * Convert a `BaseRelation` created for external data sources into a `DataFrame`.
    *
    * @since 2.0.0
    */
@@ -470,7 +470,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Creates a [[Dataset]] with a single [[LongType]] column named `id`, containing elements
+   * Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
    * in a range from 0 to `end` (exclusive) with step value 1.
    *
    * @since 2.0.0
@@ -481,7 +481,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Creates a [[Dataset]] with a single [[LongType]] column named `id`, containing elements
+   * Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
    * in a range from `start` to `end` (exclusive) with step value 1.
    *
    * @since 2.0.0
@@ -494,7 +494,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Creates a [[Dataset]] with a single [[LongType]] column named `id`, containing elements
+   * Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
    * in a range from `start` to `end` (exclusive) with a step value.
    *
    * @since 2.0.0
@@ -507,7 +507,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Creates a [[Dataset]] with a single [[LongType]] column named `id`, containing elements
+   * Creates a [[Dataset]] with a single `LongType` column named `id`, containing elements
    * in a range from `start` to `end` (exclusive) with a step value, with partition number
    * specified.
    *
@@ -520,7 +520,7 @@ class SparkSession private(
   }
 
   /**
-   * Creates a [[DataFrame]] from an RDD[Row].
+   * Creates a `DataFrame` from an RDD[Row].
    * User can specify whether the input rows should be converted to Catalyst rows.
    */
   private[sql] def internalCreateDataFrame(
@@ -533,7 +533,7 @@ class SparkSession private(
   }
 
   /**
-   * Creates a [[DataFrame]] from an RDD[Row].
+   * Creates a `DataFrame` from an RDD[Row].
    * User can specify whether the input rows should be converted to Catalyst rows.
    */
   private[sql] def createDataFrame(
@@ -566,7 +566,7 @@ class SparkSession private(
   @transient lazy val catalog: Catalog = new CatalogImpl(self)
 
   /**
-   * Returns the specified table as a [[DataFrame]].
+   * Returns the specified table as a `DataFrame`.
    *
    * @since 2.0.0
    */
@@ -583,7 +583,7 @@ class SparkSession private(
    * ----------------- */
 
   /**
-   * Executes a SQL query using Spark, returning the result as a [[DataFrame]].
+   * Executes a SQL query using Spark, returning the result as a `DataFrame`.
    * The dialect that is used for SQL parsing can be configured with 'spark.sql.dialect'.
    *
    * @since 2.0.0
@@ -594,7 +594,7 @@ class SparkSession private(
 
   /**
    * Returns a [[DataFrameReader]] that can be used to read non-streaming data in as a
-   * [[DataFrame]].
+   * `DataFrame`.
    * {{{
    *   sparkSession.read.parquet("/path/to/file.parquet")
    *   sparkSession.read.schema(schema).json("/path/to/file.json")
@@ -606,7 +606,7 @@ class SparkSession private(
 
   /**
    * :: Experimental ::
-   * Returns a [[DataStreamReader]] that can be used to read streaming data in as a [[DataFrame]].
+   * Returns a `DataStreamReader` that can be used to read streaming data in as a `DataFrame`.
    * {{{
    *   sparkSession.readStream.parquet("/path/to/directory/of/parquet/files")
    *   sparkSession.readStream.schema(schema).json("/path/to/directory/of/json/files")
@@ -624,7 +624,7 @@ class SparkSession private(
   /**
    * :: Experimental ::
    * (Scala-specific) Implicit methods available in Scala for converting
-   * common Scala objects into [[DataFrame]]s.
+   * common Scala objects into `DataFrame`s.
    *
    * {{{
    *   val sparkSession = SparkSession.builder.getOrCreate()
@@ -641,7 +641,7 @@ class SparkSession private(
   // scalastyle:on
 
   /**
-   * Stop the underlying [[SparkContext]].
+   * Stop the underlying `SparkContext`.
    *
    * @since 2.0.0
    */
@@ -726,7 +726,7 @@ object SparkSession {
 
     /**
      * Sets a config option. Options set using this method are automatically propagated to
-     * both [[SparkConf]] and SparkSession's own configuration.
+     * both `SparkConf` and SparkSession's own configuration.
      *
      * @since 2.0.0
      */
@@ -737,7 +737,7 @@ object SparkSession {
 
     /**
      * Sets a config option. Options set using this method are automatically propagated to
-     * both [[SparkConf]] and SparkSession's own configuration.
+     * both `SparkConf` and SparkSession's own configuration.
      *
      * @since 2.0.0
      */
@@ -748,7 +748,7 @@ object SparkSession {
 
     /**
      * Sets a config option. Options set using this method are automatically propagated to
-     * both [[SparkConf]] and SparkSession's own configuration.
+     * both `SparkConf` and SparkSession's own configuration.
      *
      * @since 2.0.0
      */
@@ -759,7 +759,7 @@ object SparkSession {
 
     /**
      * Sets a config option. Options set using this method are automatically propagated to
-     * both [[SparkConf]] and SparkSession's own configuration.
+     * both `SparkConf` and SparkSession's own configuration.
      *
      * @since 2.0.0
      */
@@ -769,7 +769,7 @@ object SparkSession {
     }
 
     /**
-     * Sets a list of config options based on the given [[SparkConf]].
+     * Sets a list of config options based on the given `SparkConf`.
      *
      * @since 2.0.0
      */

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/UDFRegistration.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/UDFRegistration.scala b/sql/core/src/main/scala/org/apache/spark/sql/UDFRegistration.scala
index 6043c5e..c8be89c 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/UDFRegistration.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/UDFRegistration.scala
@@ -38,7 +38,7 @@ import org.apache.spark.sql.types.{DataType, DataTypes}
 import org.apache.spark.util.Utils
 
 /**
- * Functions for registering user-defined functions. Use [[SQLContext.udf]] to access this.
+ * Functions for registering user-defined functions. Use `SQLContext.udf` to access this.
  *
  * @note The user-defined functions must be deterministic.
  *

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/functions.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/functions.scala b/sql/core/src/main/scala/org/apache/spark/sql/functions.scala
index d5940c6..650439a 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/functions.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/functions.scala
@@ -474,7 +474,9 @@ object functions {
   /**
    * Aggregate function: returns the level of grouping, equals to
    *
-   *   (grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn)
+   * {{{
+   *   (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
+   * }}}
    *
    * @note The list of columns should match with grouping columns exactly, or empty (means all the
    * grouping columns).
@@ -487,7 +489,9 @@ object functions {
   /**
    * Aggregate function: returns the level of grouping, equals to
    *
-   *   (grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn)
+   * {{{
+   *   (grouping(c1) <<; (n-1)) + (grouping(c2) <<; (n-2)) + ... + grouping(cn)
+   * }}}
    *
    * @note The list of columns should match with grouping columns exactly.
    *
@@ -1048,9 +1052,12 @@ object functions {
    * within each partition in the lower 33 bits. The assumption is that the data frame has
    * less than 1 billion partitions, and each partition has less than 8 billion records.
    *
-   * As an example, consider a [[DataFrame]] with two partitions, each with 3 records.
+   * As an example, consider a `DataFrame` with two partitions, each with 3 records.
    * This expression would return the following IDs:
+   *
+   * {{{
    * 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
+   * }}}
    *
    * @group normal_funcs
    * @since 1.4.0
@@ -1066,9 +1073,12 @@ object functions {
    * within each partition in the lower 33 bits. The assumption is that the data frame has
    * less than 1 billion partitions, and each partition has less than 8 billion records.
    *
-   * As an example, consider a [[DataFrame]] with two partitions, each with 3 records.
+   * As an example, consider a `DataFrame` with two partitions, each with 3 records.
    * This expression would return the following IDs:
+   *
+   * {{{
    * 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594.
+   * }}}
    *
    * @group normal_funcs
    * @since 1.6.0
@@ -1184,7 +1194,7 @@ object functions {
 
   /**
    * Creates a new struct column.
-   * If the input column is a column in a [[DataFrame]], or a derived column expression
+   * If the input column is a column in a `DataFrame`, or a derived column expression
    * that is named (i.e. aliased), its name would be remained as the StructField's name,
    * otherwise, the newly generated StructField's name would be auto generated as col${index + 1},
    * i.e. col1, col2, col3, ...
@@ -1846,8 +1856,8 @@ object functions {
   def round(e: Column): Column = round(e, 0)
 
   /**
-   * Round the value of `e` to `scale` decimal places if `scale` >= 0
-   * or at integral part when `scale` < 0.
+   * Round the value of `e` to `scale` decimal places if `scale` is greater than or equal to 0
+   * or at integral part when `scale` is less than 0.
    *
    * @group math_funcs
    * @since 1.5.0
@@ -1864,7 +1874,7 @@ object functions {
 
   /**
    * Round the value of `e` to `scale` decimal places with HALF_EVEN round mode
-   * if `scale` >= 0 or at integral part when `scale` < 0.
+   * if `scale` is greater than or equal to 0 or at integral part when `scale` is less than 0.
    *
    * @group math_funcs
    * @since 2.0.0
@@ -2172,7 +2182,7 @@ object functions {
    * and returns the result as a string column.
    *
    * If d is 0, the result has no decimal point or fractional part.
-   * If d < 0, the result will be null.
+   * If d is less than 0, the result will be null.
    *
    * @group string_funcs
    * @since 1.5.0
@@ -2888,7 +2898,7 @@ object functions {
   }
 
   /**
-   * (Scala-specific) Parses a column containing a JSON string into a [[StructType]] with the
+   * (Scala-specific) Parses a column containing a JSON string into a `StructType` with the
    * specified schema. Returns `null`, in the case of an unparseable string.
    *
    * @param e a string column containing JSON data.
@@ -2904,7 +2914,7 @@ object functions {
   }
 
   /**
-   * (Java-specific) Parses a column containing a JSON string into a [[StructType]] with the
+   * (Java-specific) Parses a column containing a JSON string into a `StructType` with the
    * specified schema. Returns `null`, in the case of an unparseable string.
    *
    * @param e a string column containing JSON data.
@@ -2919,7 +2929,7 @@ object functions {
     from_json(e, schema, options.asScala.toMap)
 
   /**
-   * Parses a column containing a JSON string into a [[StructType]] with the specified schema.
+   * Parses a column containing a JSON string into a `StructType` with the specified schema.
    * Returns `null`, in the case of an unparseable string.
    *
    * @param e a string column containing JSON data.
@@ -2932,7 +2942,7 @@ object functions {
     from_json(e, schema, Map.empty[String, String])
 
   /**
-   * Parses a column containing a JSON string into a [[StructType]] with the specified schema.
+   * Parses a column containing a JSON string into a `StructType` with the specified schema.
    * Returns `null`, in the case of an unparseable string.
    *
    * @param e a string column containing JSON data.
@@ -2946,7 +2956,7 @@ object functions {
 
 
   /**
-   * (Scala-specific) Converts a column containing a [[StructType]] into a JSON string with the
+   * (Scala-specific) Converts a column containing a `StructType` into a JSON string with the
    * specified schema. Throws an exception, in the case of an unsupported type.
    *
    * @param e a struct column.
@@ -2961,7 +2971,7 @@ object functions {
   }
 
   /**
-   * (Java-specific) Converts a column containing a [[StructType]] into a JSON string with the
+   * (Java-specific) Converts a column containing a `StructType` into a JSON string with the
    * specified schema. Throws an exception, in the case of an unsupported type.
    *
    * @param e a struct column.
@@ -2975,7 +2985,7 @@ object functions {
     to_json(e, options.asScala.toMap)
 
   /**
-   * Converts a column containing a [[StructType]] into a JSON string with the
+   * Converts a column containing a `StructType` into a JSON string with the
    * specified schema. Throws an exception, in the case of an unsupported type.
    *
    * @param e a struct column.

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/internal/CatalogImpl.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/internal/CatalogImpl.scala b/sql/core/src/main/scala/org/apache/spark/sql/internal/CatalogImpl.scala
index d3e323c..6d98462 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/internal/CatalogImpl.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/internal/CatalogImpl.scala
@@ -32,7 +32,7 @@ import org.apache.spark.sql.types.StructType
 
 
 /**
- * Internal implementation of the user-facing [[Catalog]].
+ * Internal implementation of the user-facing `Catalog`.
  */
 class CatalogImpl(sparkSession: SparkSession) extends Catalog {
 
@@ -175,8 +175,8 @@ class CatalogImpl(sparkSession: SparkSession) extends Catalog {
   }
 
   /**
-   * Get the database with the specified name. This throws an [[AnalysisException]] when no
-   * [[Database]] can be found.
+   * Get the database with the specified name. This throws an `AnalysisException` when no
+   * `Database` can be found.
    */
   override def getDatabase(dbName: String): Database = {
     makeDatabase(dbName)
@@ -184,7 +184,7 @@ class CatalogImpl(sparkSession: SparkSession) extends Catalog {
 
   /**
    * Get the table or view with the specified name. This table can be a temporary view or a
-   * table/view in the current database. This throws an [[AnalysisException]] when no [[Table]]
+   * table/view in the current database. This throws an `AnalysisException` when no `Table`
    * can be found.
    */
   override def getTable(tableName: String): Table = {
@@ -193,7 +193,7 @@ class CatalogImpl(sparkSession: SparkSession) extends Catalog {
 
   /**
    * Get the table or view with the specified name in the specified database. This throws an
-   * [[AnalysisException]] when no [[Table]] can be found.
+   * `AnalysisException` when no `Table` can be found.
    */
   override def getTable(dbName: String, tableName: String): Table = {
     makeTable(TableIdentifier(tableName, Option(dbName)))
@@ -201,7 +201,7 @@ class CatalogImpl(sparkSession: SparkSession) extends Catalog {
 
   /**
    * Get the function with the specified name. This function can be a temporary function or a
-   * function in the current database. This throws an [[AnalysisException]] when no [[Function]]
+   * function in the current database. This throws an `AnalysisException` when no `Function`
    * can be found.
    */
   override def getFunction(functionName: String): Function = {
@@ -209,7 +209,7 @@ class CatalogImpl(sparkSession: SparkSession) extends Catalog {
   }
 
   /**
-   * Get the function with the specified name. This returns [[None]] when no [[Function]] can be
+   * Get the function with the specified name. This returns `None` when no `Function` can be
    * found.
    */
   override def getFunction(dbName: String, functionName: String): Function = {

http://git-wip-us.apache.org/repos/asf/spark/blob/84b2af22/sql/core/src/main/scala/org/apache/spark/sql/internal/VariableSubstitution.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/internal/VariableSubstitution.scala b/sql/core/src/main/scala/org/apache/spark/sql/internal/VariableSubstitution.scala
index 791a9cf..4e7c813 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/internal/VariableSubstitution.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/internal/VariableSubstitution.scala
@@ -23,7 +23,7 @@ import org.apache.spark.internal.config._
  * A helper class that enables substitution using syntax like
  * `${var}`, `${system:var}` and `${env:var}`.
  *
- * Variable substitution is controlled by [[SQLConf.variableSubstituteEnabled]].
+ * Variable substitution is controlled by `SQLConf.variableSubstituteEnabled`.
  */
 class VariableSubstitution(conf: SQLConf) {
 


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message