spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From sro...@apache.org
Subject [2/3] spark git commit: [SPARK-18445][BUILD][DOCS] Fix the markdown for `Note:`/`NOTE:`/`Note that`/`'''Note:'''` across Scala/Java API documentation
Date Sat, 19 Nov 2016 11:24:24 GMT
http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/external/kafka-0-8/src/main/scala/org/apache/spark/streaming/kafka/KafkaUtils.scala
----------------------------------------------------------------------
diff --git a/external/kafka-0-8/src/main/scala/org/apache/spark/streaming/kafka/KafkaUtils.scala b/external/kafka-0-8/src/main/scala/org/apache/spark/streaming/kafka/KafkaUtils.scala
index b17e198..56f0cb0 100644
--- a/external/kafka-0-8/src/main/scala/org/apache/spark/streaming/kafka/KafkaUtils.scala
+++ b/external/kafka-0-8/src/main/scala/org/apache/spark/streaming/kafka/KafkaUtils.scala
@@ -223,7 +223,7 @@ object KafkaUtils {
   }
 
   /**
-   * Create a RDD from Kafka using offset ranges for each topic and partition.
+   * Create an RDD from Kafka using offset ranges for each topic and partition.
    *
    * @param sc SparkContext object
    * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">
@@ -255,7 +255,7 @@ object KafkaUtils {
   }
 
   /**
-   * Create a RDD from Kafka using offset ranges for each topic and partition. This allows you
+   * Create an RDD from Kafka using offset ranges for each topic and partition. This allows you
    * specify the Kafka leader to connect to (to optimize fetching) and access the message as well
    * as the metadata.
    *
@@ -303,7 +303,7 @@ object KafkaUtils {
   }
 
   /**
-   * Create a RDD from Kafka using offset ranges for each topic and partition.
+   * Create an RDD from Kafka using offset ranges for each topic and partition.
    *
    * @param jsc JavaSparkContext object
    * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">
@@ -340,7 +340,7 @@ object KafkaUtils {
   }
 
   /**
-   * Create a RDD from Kafka using offset ranges for each topic and partition. This allows you
+   * Create an RDD from Kafka using offset ranges for each topic and partition. This allows you
    * specify the Kafka leader to connect to (to optimize fetching) and access the message as well
    * as the metadata.
    *

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/KinesisUtils.scala
----------------------------------------------------------------------
diff --git a/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/KinesisUtils.scala b/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/KinesisUtils.scala
index a0007d3..b2daffa 100644
--- a/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/KinesisUtils.scala
+++ b/external/kinesis-asl/src/main/scala/org/apache/spark/streaming/kinesis/KinesisUtils.scala
@@ -33,10 +33,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note: The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
-   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
-   * gets the AWS credentials.
-   *
    * @param ssc StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -57,6 +53,10 @@ object KinesisUtils {
    *                     StorageLevel.MEMORY_AND_DISK_2 is recommended.
    * @param messageHandler A custom message handler that can generate a generic output from a
    *                       Kinesis `Record`, which contains both message data, and metadata.
+   *
+   * @note The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
+   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
+   * gets the AWS credentials.
    */
   def createStream[T: ClassTag](
       ssc: StreamingContext,
@@ -81,10 +81,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note:
-   *  The given AWS credentials will get saved in DStream checkpoints if checkpointing
-   *  is enabled. Make sure that your checkpoint directory is secure.
-   *
    * @param ssc StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -107,6 +103,9 @@ object KinesisUtils {
    *                       Kinesis `Record`, which contains both message data, and metadata.
    * @param awsAccessKeyId  AWS AccessKeyId (if null, will use DefaultAWSCredentialsProviderChain)
    * @param awsSecretKey  AWS SecretKey (if null, will use DefaultAWSCredentialsProviderChain)
+   *
+   * @note The given AWS credentials will get saved in DStream checkpoints if checkpointing
+   * is enabled. Make sure that your checkpoint directory is secure.
    */
   // scalastyle:off
   def createStream[T: ClassTag](
@@ -134,10 +133,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note: The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
-   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
-   * gets the AWS credentials.
-   *
    * @param ssc StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -156,6 +151,10 @@ object KinesisUtils {
    *                            details on the different types of checkpoints.
    * @param storageLevel Storage level to use for storing the received objects.
    *                     StorageLevel.MEMORY_AND_DISK_2 is recommended.
+   *
+   * @note The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
+   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
+   * gets the AWS credentials.
    */
   def createStream(
       ssc: StreamingContext,
@@ -178,10 +177,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note:
-   *  The given AWS credentials will get saved in DStream checkpoints if checkpointing
-   *  is enabled. Make sure that your checkpoint directory is secure.
-   *
    * @param ssc StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -202,6 +197,9 @@ object KinesisUtils {
    *                     StorageLevel.MEMORY_AND_DISK_2 is recommended.
    * @param awsAccessKeyId  AWS AccessKeyId (if null, will use DefaultAWSCredentialsProviderChain)
    * @param awsSecretKey  AWS SecretKey (if null, will use DefaultAWSCredentialsProviderChain)
+   *
+   * @note The given AWS credentials will get saved in DStream checkpoints if checkpointing
+   * is enabled. Make sure that your checkpoint directory is secure.
    */
   def createStream(
       ssc: StreamingContext,
@@ -225,10 +223,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note: The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
-   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
-   * gets the AWS credentials.
-   *
    * @param jssc Java StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -250,6 +244,10 @@ object KinesisUtils {
    * @param messageHandler A custom message handler that can generate a generic output from a
    *                       Kinesis `Record`, which contains both message data, and metadata.
    * @param recordClass Class of the records in DStream
+   *
+   * @note The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
+   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
+   * gets the AWS credentials.
    */
   def createStream[T](
       jssc: JavaStreamingContext,
@@ -272,10 +270,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note:
-   * The given AWS credentials will get saved in DStream checkpoints if checkpointing
-   * is enabled. Make sure that your checkpoint directory is secure.
-   *
    * @param jssc Java StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -299,6 +293,9 @@ object KinesisUtils {
    * @param recordClass Class of the records in DStream
    * @param awsAccessKeyId  AWS AccessKeyId (if null, will use DefaultAWSCredentialsProviderChain)
    * @param awsSecretKey  AWS SecretKey (if null, will use DefaultAWSCredentialsProviderChain)
+   *
+   * @note The given AWS credentials will get saved in DStream checkpoints if checkpointing
+   * is enabled. Make sure that your checkpoint directory is secure.
    */
   // scalastyle:off
   def createStream[T](
@@ -326,10 +323,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note: The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
-   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
-   * gets the AWS credentials.
-   *
    * @param jssc Java StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -348,6 +341,10 @@ object KinesisUtils {
    *                            details on the different types of checkpoints.
    * @param storageLevel Storage level to use for storing the received objects.
    *                     StorageLevel.MEMORY_AND_DISK_2 is recommended.
+   *
+   * @note The AWS credentials will be discovered using the DefaultAWSCredentialsProviderChain
+   * on the workers. See AWS documentation to understand how DefaultAWSCredentialsProviderChain
+   * gets the AWS credentials.
    */
   def createStream(
       jssc: JavaStreamingContext,
@@ -367,10 +364,6 @@ object KinesisUtils {
    * Create an input stream that pulls messages from a Kinesis stream.
    * This uses the Kinesis Client Library (KCL) to pull messages from Kinesis.
    *
-   * Note:
-   * The given AWS credentials will get saved in DStream checkpoints if checkpointing
-   * is enabled. Make sure that your checkpoint directory is secure.
-   *
    * @param jssc Java StreamingContext object
    * @param kinesisAppName  Kinesis application name used by the Kinesis Client Library
    *                        (KCL) to update DynamoDB
@@ -391,6 +384,9 @@ object KinesisUtils {
    *                     StorageLevel.MEMORY_AND_DISK_2 is recommended.
    * @param awsAccessKeyId  AWS AccessKeyId (if null, will use DefaultAWSCredentialsProviderChain)
    * @param awsSecretKey  AWS SecretKey (if null, will use DefaultAWSCredentialsProviderChain)
+   *
+   * @note The given AWS credentials will get saved in DStream checkpoints if checkpointing
+   * is enabled. Make sure that your checkpoint directory is secure.
    */
   def createStream(
       jssc: JavaStreamingContext,

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/external/kinesis-asl/src/test/scala/org/apache/spark/streaming/kinesis/KinesisBackedBlockRDDSuite.scala
----------------------------------------------------------------------
diff --git a/external/kinesis-asl/src/test/scala/org/apache/spark/streaming/kinesis/KinesisBackedBlockRDDSuite.scala b/external/kinesis-asl/src/test/scala/org/apache/spark/streaming/kinesis/KinesisBackedBlockRDDSuite.scala
index 905c338..a4d81a6 100644
--- a/external/kinesis-asl/src/test/scala/org/apache/spark/streaming/kinesis/KinesisBackedBlockRDDSuite.scala
+++ b/external/kinesis-asl/src/test/scala/org/apache/spark/streaming/kinesis/KinesisBackedBlockRDDSuite.scala
@@ -221,7 +221,7 @@ abstract class KinesisBackedBlockRDDTests(aggregateTestData: Boolean)
     assert(collectedData.toSet === testData.toSet)
 
     // Verify that the block fetching is skipped when isBlockValid is set to false.
-    // This is done by using a RDD whose data is only in memory but is set to skip block fetching
+    // This is done by using an RDD whose data is only in memory but is set to skip block fetching
     // Using that RDD will throw exception, as it skips block fetching even if the blocks are in
     // in BlockManager.
     if (testIsBlockValid) {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala
----------------------------------------------------------------------
diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala
index e188313..3810110 100644
--- a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala
+++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala
@@ -42,7 +42,7 @@ class GraphImpl[VD: ClassTag, ED: ClassTag] protected (
 
   @transient override val edges: EdgeRDDImpl[ED, VD] = replicatedVertexView.edges
 
-  /** Return a RDD that brings edges together with their source and destination vertices. */
+  /** Return an RDD that brings edges together with their source and destination vertices. */
   @transient override lazy val triplets: RDD[EdgeTriplet[VD, ED]] = {
     replicatedVertexView.upgrade(vertices, true, true)
     replicatedVertexView.edges.partitionsRDD.mapPartitions(_.flatMap {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
----------------------------------------------------------------------
diff --git a/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala b/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
index c0c3c73..f926984 100644
--- a/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
+++ b/graphx/src/main/scala/org/apache/spark/graphx/lib/PageRank.scala
@@ -58,7 +58,7 @@ import org.apache.spark.ml.linalg.{Vector, Vectors}
  * `alpha` is the random reset probability (typically 0.15), `inNbrs[i]` is the set of
  * neighbors which link to `i` and `outDeg[j]` is the out degree of vertex `j`.
  *
- * Note that this is not the "normalized" PageRank and as a consequence pages that have no
+ * @note This is not the "normalized" PageRank and as a consequence pages that have no
  * inlinks will have a PageRank of alpha.
  */
 object PageRank extends Logging {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Vectors.scala
----------------------------------------------------------------------
diff --git a/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Vectors.scala b/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Vectors.scala
index 2e4a58d..22e4ec6 100644
--- a/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Vectors.scala
+++ b/mllib-local/src/main/scala/org/apache/spark/ml/linalg/Vectors.scala
@@ -30,7 +30,7 @@ import org.apache.spark.annotation.Since
 /**
  * Represents a numeric vector, whose index type is Int and value type is Double.
  *
- * Note: Users should not implement this interface.
+ * @note Users should not implement this interface.
  */
 @Since("2.0.0")
 sealed trait Vector extends Serializable {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/Model.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/Model.scala b/mllib/src/main/scala/org/apache/spark/ml/Model.scala
index 252acc1..c581fed 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/Model.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/Model.scala
@@ -30,7 +30,7 @@ import org.apache.spark.ml.param.ParamMap
 abstract class Model[M <: Model[M]] extends Transformer {
   /**
    * The parent estimator that produced this model.
-   * Note: For ensembles' component Models, this value can be null.
+   * @note For ensembles' component Models, this value can be null.
    */
   @transient var parent: Estimator[M] = _
 

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala
index bb192ab..7424031 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/classification/DecisionTreeClassifier.scala
@@ -207,9 +207,9 @@ class DecisionTreeClassificationModel private[ml] (
    *     where gain is scaled by the number of instances passing through node
    *   - Normalize importances for tree to sum to 1.
    *
-   * Note: Feature importance for single decision trees can have high variance due to
-   *       correlated predictor variables. Consider using a [[RandomForestClassifier]]
-   *       to determine feature importance instead.
+   * @note Feature importance for single decision trees can have high variance due to
+   * correlated predictor variables. Consider using a [[RandomForestClassifier]]
+   * to determine feature importance instead.
    */
   @Since("2.0.0")
   lazy val featureImportances: Vector = TreeEnsembleModel.featureImportances(this, numFeatures)

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala
index f8f164e..52f93f5 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/classification/GBTClassifier.scala
@@ -43,7 +43,6 @@ import org.apache.spark.sql.types.DoubleType
  * Gradient-Boosted Trees (GBTs) (http://en.wikipedia.org/wiki/Gradient_boosting)
  * learning algorithm for classification.
  * It supports binary labels, as well as both continuous and categorical features.
- * Note: Multiclass labels are not currently supported.
  *
  * The implementation is based upon: J.H. Friedman. "Stochastic Gradient Boosting." 1999.
  *
@@ -54,6 +53,8 @@ import org.apache.spark.sql.types.DoubleType
  *    based on the loss function, whereas the original gradient boosting method does not.
  *  - We expect to implement TreeBoost in the future:
  *    [https://issues.apache.org/jira/browse/SPARK-4240]
+ *
+ * @note Multiclass labels are not currently supported.
  */
 @Since("1.4.0")
 class GBTClassifier @Since("1.4.0") (
@@ -169,10 +170,11 @@ object GBTClassifier extends DefaultParamsReadable[GBTClassifier] {
  * Gradient-Boosted Trees (GBTs) (http://en.wikipedia.org/wiki/Gradient_boosting)
  * model for classification.
  * It supports binary labels, as well as both continuous and categorical features.
- * Note: Multiclass labels are not currently supported.
  *
  * @param _trees  Decision trees in the ensemble.
  * @param _treeWeights  Weights for the decision trees in the ensemble.
+ *
+ * @note Multiclass labels are not currently supported.
  */
 @Since("1.6.0")
 class GBTClassificationModel private[ml](

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
index 18b9b30..71a7fe5 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala
@@ -1191,8 +1191,8 @@ class BinaryLogisticRegressionSummary private[classification] (
    * with (0.0, 0.0) prepended and (1.0, 1.0) appended to it.
    * See http://en.wikipedia.org/wiki/Receiver_operating_characteristic
    *
-   * Note: This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   @transient lazy val roc: DataFrame = binaryMetrics.roc().toDF("FPR", "TPR")
@@ -1200,8 +1200,8 @@ class BinaryLogisticRegressionSummary private[classification] (
   /**
    * Computes the area under the receiver operating characteristic (ROC) curve.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   lazy val areaUnderROC: Double = binaryMetrics.areaUnderROC()
@@ -1210,8 +1210,8 @@ class BinaryLogisticRegressionSummary private[classification] (
    * Returns the precision-recall curve, which is a Dataframe containing
    * two fields recall, precision with (0.0, 1.0) prepended to it.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   @transient lazy val pr: DataFrame = binaryMetrics.pr().toDF("recall", "precision")
@@ -1219,8 +1219,8 @@ class BinaryLogisticRegressionSummary private[classification] (
   /**
    * Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   @transient lazy val fMeasureByThreshold: DataFrame = {
@@ -1232,8 +1232,8 @@ class BinaryLogisticRegressionSummary private[classification] (
    * Every possible probability obtained in transforming the dataset are used
    * as thresholds used in calculating the precision.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   @transient lazy val precisionByThreshold: DataFrame = {
@@ -1245,8 +1245,8 @@ class BinaryLogisticRegressionSummary private[classification] (
    * Every possible probability obtained in transforming the dataset are used
    * as thresholds used in calculating the recall.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from `LogisticRegression.weightCol`.
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   @transient lazy val recallByThreshold: DataFrame = {
@@ -1401,18 +1401,18 @@ class BinaryLogisticRegressionSummary private[classification] (
  *    $$
  * </blockquote></p>
  *
- * @note In order to avoid unnecessary computation during calculation of the gradient updates
- *       we lay out the coefficients in column major order during training. This allows us to
- *       perform feature standardization once, while still retaining sequential memory access
- *       for speed. We convert back to row major order when we create the model,
- *       since this form is optimal for the matrix operations used for prediction.
- *
  * @param bcCoefficients The broadcast coefficients corresponding to the features.
  * @param bcFeaturesStd The broadcast standard deviation values of the features.
  * @param numClasses the number of possible outcomes for k classes classification problem in
  *                   Multinomial Logistic Regression.
  * @param fitIntercept Whether to fit an intercept term.
  * @param multinomial Whether to use multinomial (softmax) or binary loss
+ *
+ * @note In order to avoid unnecessary computation during calculation of the gradient updates
+ * we lay out the coefficients in column major order during training. This allows us to
+ * perform feature standardization once, while still retaining sequential memory access
+ * for speed. We convert back to row major order when we create the model,
+ * since this form is optimal for the matrix operations used for prediction.
  */
 private class LogisticAggregator(
     bcCoefficients: Broadcast[Vector],

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala
index a0bd66e..c6035cc 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala
@@ -268,9 +268,9 @@ object GaussianMixtureModel extends MLReadable[GaussianMixtureModel] {
  * While this process is generally guaranteed to converge, it is not guaranteed
  * to find a global optimum.
  *
- * Note: For high-dimensional data (with many features), this algorithm may perform poorly.
- *       This is due to high-dimensional data (a) making it difficult to cluster at all (based
- *       on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions.
+ * @note For high-dimensional data (with many features), this algorithm may perform poorly.
+ * This is due to high-dimensional data (a) making it difficult to cluster at all (based
+ * on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions.
  */
 @Since("2.0.0")
 @Experimental

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala
index 28cbe1c..ccfb0ce 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala
@@ -85,7 +85,8 @@ private[feature] trait MinMaxScalerParams extends Params with HasInputCol with H
  * </blockquote></p>
  *
  * For the case $E_{max} == E_{min}$, $Rescaled(e_i) = 0.5 * (max + min)$.
- * Note that since zero values will probably be transformed to non-zero values, output of the
+ *
+ * @note Since zero values will probably be transformed to non-zero values, output of the
  * transformer will be DenseVector even for sparse input.
  */
 @Since("1.5.0")

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala
index e8e28ba..ea40121 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala
@@ -36,7 +36,8 @@ import org.apache.spark.sql.types.{DoubleType, NumericType, StructType}
  * The last category is not included by default (configurable via [[OneHotEncoder!.dropLast]]
  * because it makes the vector entries sum up to one, and hence linearly dependent.
  * So an input value of 4.0 maps to `[0.0, 0.0, 0.0, 0.0]`.
- * Note that this is different from scikit-learn's OneHotEncoder, which keeps all categories.
+ *
+ * @note This is different from scikit-learn's OneHotEncoder, which keeps all categories.
  * The output vectors are sparse.
  *
  * @see [[StringIndexer]] for converting categorical values into category indices

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala
index 1e49352..6e08bf0 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala
@@ -142,8 +142,9 @@ class PCAModel private[ml] (
 
   /**
    * Transform a vector by computed Principal Components.
-   * NOTE: Vectors to be transformed must be the same length
-   * as the source vectors given to [[PCA.fit()]].
+   *
+   * @note Vectors to be transformed must be the same length as the source vectors given
+   * to [[PCA.fit()]].
    */
   @Since("2.0.0")
   override def transform(dataset: Dataset[_]): DataFrame = {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/feature/StopWordsRemover.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/StopWordsRemover.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/StopWordsRemover.scala
index 6660700..0ced213 100755
--- a/mllib/src/main/scala/org/apache/spark/ml/feature/StopWordsRemover.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/feature/StopWordsRemover.scala
@@ -28,7 +28,10 @@ import org.apache.spark.sql.types.{ArrayType, StringType, StructType}
 
 /**
  * A feature transformer that filters out stop words from input.
- * Note: null values from input array are preserved unless adding null to stopWords explicitly.
+ *
+ * @note null values from input array are preserved unless adding null to stopWords
+ * explicitly.
+ *
  * @see [[http://en.wikipedia.org/wiki/Stop_words]]
  */
 @Since("1.5.0")

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala
index 80fe467..8b155f0 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala
@@ -113,11 +113,11 @@ object StringIndexer extends DefaultParamsReadable[StringIndexer] {
 /**
  * Model fitted by [[StringIndexer]].
  *
- * NOTE: During transformation, if the input column does not exist,
+ * @param labels  Ordered list of labels, corresponding to indices to be assigned.
+ *
+ * @note During transformation, if the input column does not exist,
  * [[StringIndexerModel.transform]] would return the input dataset unmodified.
  * This is a temporary fix for the case when target labels do not exist during prediction.
- *
- * @param labels  Ordered list of labels, corresponding to indices to be assigned.
  */
 @Since("1.4.0")
 class StringIndexerModel (

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
index 9245931..96206e0 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/param/params.scala
@@ -533,7 +533,7 @@ trait Params extends Identifiable with Serializable {
    * Returns all params sorted by their names. The default implementation uses Java reflection to
    * list all public methods that have no arguments and return [[Param]].
    *
-   * Note: Developer should not use this method in constructor because we cannot guarantee that
+   * @note Developer should not use this method in constructor because we cannot guarantee that
    * this variable gets initialized before other params.
    */
   lazy val params: Array[Param[_]] = {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala
index ebc6c12..1419da8 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/regression/DecisionTreeRegressor.scala
@@ -207,9 +207,9 @@ class DecisionTreeRegressionModel private[ml] (
    *     where gain is scaled by the number of instances passing through node
    *   - Normalize importances for tree to sum to 1.
    *
-   * Note: Feature importance for single decision trees can have high variance due to
-   *       correlated predictor variables. Consider using a [[RandomForestRegressor]]
-   *       to determine feature importance instead.
+   * @note Feature importance for single decision trees can have high variance due to
+   * correlated predictor variables. Consider using a [[RandomForestRegressor]]
+   * to determine feature importance instead.
    */
   @Since("2.0.0")
   lazy val featureImportances: Vector = TreeEnsembleModel.featureImportances(this, numFeatures)

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala
index 1d2961e..736fd3b 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala
@@ -879,8 +879,8 @@ class GeneralizedLinearRegressionSummary private[regression] (
    * Private copy of model to ensure Params are not modified outside this class.
    * Coefficients is not a deep copy, but that is acceptable.
    *
-   * NOTE: [[predictionCol]] must be set correctly before the value of [[model]] is set,
-   *       and [[model]] must be set before [[predictions]] is set!
+   * @note [[predictionCol]] must be set correctly before the value of [[model]] is set,
+   * and [[model]] must be set before [[predictions]] is set!
    */
   protected val model: GeneralizedLinearRegressionModel =
     origModel.copy(ParamMap.empty).setPredictionCol(predictionCol)

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
index 71c542a..da7ce6b 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala
@@ -103,11 +103,13 @@ class LinearRegression @Since("1.3.0") (@Since("1.3.0") override val uid: String
   /**
    * Whether to standardize the training features before fitting the model.
    * The coefficients of models will be always returned on the original scale,
-   * so it will be transparent for users. Note that with/without standardization,
-   * the models should be always converged to the same solution when no regularization
-   * is applied. In R's GLMNET package, the default behavior is true as well.
+   * so it will be transparent for users.
    * Default is true.
    *
+   * @note With/without standardization, the models should be always converged
+   * to the same solution when no regularization is applied. In R's GLMNET package,
+   * the default behavior is true as well.
+   *
    * @group setParam
    */
   @Since("1.5.0")
@@ -624,8 +626,8 @@ class LinearRegressionSummary private[regression] (
    * explainedVariance = 1 - variance(y - \hat{y}) / variance(y)
    * Reference: [[http://en.wikipedia.org/wiki/Explained_variation]]
    *
-   * Note: This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   val explainedVariance: Double = metrics.explainedVariance
@@ -634,8 +636,8 @@ class LinearRegressionSummary private[regression] (
    * Returns the mean absolute error, which is a risk function corresponding to the
    * expected value of the absolute error loss or l1-norm loss.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   val meanAbsoluteError: Double = metrics.meanAbsoluteError
@@ -644,8 +646,8 @@ class LinearRegressionSummary private[regression] (
    * Returns the mean squared error, which is a risk function corresponding to the
    * expected value of the squared error loss or quadratic loss.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   val meanSquaredError: Double = metrics.meanSquaredError
@@ -654,8 +656,8 @@ class LinearRegressionSummary private[regression] (
    * Returns the root mean squared error, which is defined as the square root of
    * the mean squared error.
    *
-   * Note: This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   val rootMeanSquaredError: Double = metrics.rootMeanSquaredError
@@ -664,8 +666,8 @@ class LinearRegressionSummary private[regression] (
    * Returns R^2^, the coefficient of determination.
    * Reference: [[http://en.wikipedia.org/wiki/Coefficient_of_determination]]
    *
-   * Note: This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
-   *       This will change in later Spark versions.
+   * @note This ignores instance weights (setting all to 1.0) from [[LinearRegression.weightCol]].
+   * This will change in later Spark versions.
    */
   @Since("1.5.0")
   val r2: Double = metrics.r2

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/source/libsvm/LibSVMDataSource.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/source/libsvm/LibSVMDataSource.scala b/mllib/src/main/scala/org/apache/spark/ml/source/libsvm/LibSVMDataSource.scala
index 73d8130..e137692 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/source/libsvm/LibSVMDataSource.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/source/libsvm/LibSVMDataSource.scala
@@ -48,7 +48,7 @@ import org.apache.spark.sql.{DataFrame, DataFrameReader}
  *    inconsistent feature dimensions.
  *  - "vectorType": feature vector type, "sparse" (default) or "dense".
  *
- * Note that this class is public for documentation purpose. Please don't use this class directly.
+ * @note This class is public for documentation purpose. Please don't use this class directly.
  * Rather, use the data source API as illustrated above.
  *
  * @see [[https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ LIBSVM datasets]]

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala b/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
index ede0a06..0a0bc4c 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
@@ -98,7 +98,7 @@ private[spark] object GradientBoostedTrees extends Logging {
    * @param initTreeWeight: learning rate assigned to the first tree.
    * @param initTree: first DecisionTreeModel.
    * @param loss: evaluation metric.
-   * @return a RDD with each element being a zip of the prediction and error
+   * @return an RDD with each element being a zip of the prediction and error
    *         corresponding to every sample.
    */
   def computeInitialPredictionAndError(
@@ -121,7 +121,7 @@ private[spark] object GradientBoostedTrees extends Logging {
    * @param treeWeight: Learning rate.
    * @param tree: Tree using which the prediction and error should be updated.
    * @param loss: evaluation metric.
-   * @return a RDD with each element being a zip of the prediction and error
+   * @return an RDD with each element being a zip of the prediction and error
    *         corresponding to each sample.
    */
   def updatePredictionError(

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala b/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala
index bc4f9e6..e5fa5d5 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/util/ReadWrite.scala
@@ -221,7 +221,7 @@ trait MLReadable[T] {
   /**
    * Reads an ML instance from the input path, a shortcut of `read.load(path)`.
    *
-   * Note: Implementing classes should override this to be Java-friendly.
+   * @note Implementing classes should override this to be Java-friendly.
    */
   @Since("1.6.0")
   def load(path: String): T = read.load(path)

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
index d851b98..4b65000 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala
@@ -202,9 +202,11 @@ object LogisticRegressionModel extends Loader[LogisticRegressionModel] {
  * Train a classification model for Binary Logistic Regression
  * using Stochastic Gradient Descent. By default L2 regularization is used,
  * which can be changed via `LogisticRegressionWithSGD.optimizer`.
- * NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1}
- * for k classes multi-label classification problem.
+ *
  * Using [[LogisticRegressionWithLBFGS]] is recommended over this.
+ *
+ * @note Labels used in Logistic Regression should be {0, 1, ..., k - 1}
+ * for k classes multi-label classification problem.
  */
 @Since("0.8.0")
 class LogisticRegressionWithSGD private[mllib] (
@@ -239,7 +241,8 @@ class LogisticRegressionWithSGD private[mllib] (
 
 /**
  * Top-level methods for calling Logistic Regression using Stochastic Gradient Descent.
- * NOTE: Labels used in Logistic Regression should be {0, 1}
+ *
+ * @note Labels used in Logistic Regression should be {0, 1}
  */
 @Since("0.8.0")
 @deprecated("Use ml.classification.LogisticRegression or LogisticRegressionWithLBFGS", "2.0.0")
@@ -252,7 +255,6 @@ object LogisticRegressionWithSGD {
    * number of iterations of gradient descent using the specified step size. Each iteration uses
    * `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in
    * gradient descent are initialized using the initial weights provided.
-   * NOTE: Labels used in Logistic Regression should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param numIterations Number of iterations of gradient descent to run.
@@ -260,6 +262,8 @@ object LogisticRegressionWithSGD {
    * @param miniBatchFraction Fraction of data to be used per iteration.
    * @param initialWeights Initial set of weights to be used. Array should be equal in size to
    *        the number of features in the data.
+   *
+   * @note Labels used in Logistic Regression should be {0, 1}
    */
   @Since("1.0.0")
   def train(
@@ -276,13 +280,13 @@ object LogisticRegressionWithSGD {
    * Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed
    * number of iterations of gradient descent using the specified step size. Each iteration uses
    * `miniBatchFraction` fraction of the data to calculate the gradient.
-   * NOTE: Labels used in Logistic Regression should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param numIterations Number of iterations of gradient descent to run.
    * @param stepSize Step size to be used for each iteration of gradient descent.
-
    * @param miniBatchFraction Fraction of data to be used per iteration.
+   *
+   * @note Labels used in Logistic Regression should be {0, 1}
    */
   @Since("1.0.0")
   def train(
@@ -298,13 +302,13 @@ object LogisticRegressionWithSGD {
    * Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed
    * number of iterations of gradient descent using the specified step size. We use the entire data
    * set to update the gradient in each iteration.
-   * NOTE: Labels used in Logistic Regression should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param stepSize Step size to be used for each iteration of Gradient Descent.
-
    * @param numIterations Number of iterations of gradient descent to run.
    * @return a LogisticRegressionModel which has the weights and offset from training.
+   *
+   * @note Labels used in Logistic Regression should be {0, 1}
    */
   @Since("1.0.0")
   def train(
@@ -318,11 +322,12 @@ object LogisticRegressionWithSGD {
    * Train a logistic regression model given an RDD of (label, features) pairs. We run a fixed
    * number of iterations of gradient descent using a step size of 1.0. We use the entire data set
    * to update the gradient in each iteration.
-   * NOTE: Labels used in Logistic Regression should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param numIterations Number of iterations of gradient descent to run.
    * @return a LogisticRegressionModel which has the weights and offset from training.
+   *
+   * @note Labels used in Logistic Regression should be {0, 1}
    */
   @Since("1.0.0")
   def train(
@@ -335,8 +340,6 @@ object LogisticRegressionWithSGD {
 /**
  * Train a classification model for Multinomial/Binary Logistic Regression using
  * Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default.
- * NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1}
- * for k classes multi-label classification problem.
  *
  * Earlier implementations of LogisticRegressionWithLBFGS applies a regularization
  * penalty to all elements including the intercept. If this is called with one of
@@ -344,6 +347,9 @@ object LogisticRegressionWithSGD {
  * into a call to ml.LogisticRegression, otherwise this will use the existing mllib
  * GeneralizedLinearAlgorithm trainer, resulting in a regularization penalty to the
  * intercept.
+ *
+ * @note Labels used in Logistic Regression should be {0, 1, ..., k - 1}
+ * for k classes multi-label classification problem.
  */
 @Since("1.1.0")
 class LogisticRegressionWithLBFGS

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala
index 7c3ccbb..aec1526 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/SVM.scala
@@ -125,7 +125,8 @@ object SVMModel extends Loader[SVMModel] {
 /**
  * Train a Support Vector Machine (SVM) using Stochastic Gradient Descent. By default L2
  * regularization is used, which can be changed via [[SVMWithSGD.optimizer]].
- * NOTE: Labels used in SVM should be {0, 1}.
+ *
+ * @note Labels used in SVM should be {0, 1}.
  */
 @Since("0.8.0")
 class SVMWithSGD private (
@@ -158,7 +159,9 @@ class SVMWithSGD private (
 }
 
 /**
- * Top-level methods for calling SVM. NOTE: Labels used in SVM should be {0, 1}.
+ * Top-level methods for calling SVM.
+ *
+ * @note Labels used in SVM should be {0, 1}.
  */
 @Since("0.8.0")
 object SVMWithSGD {
@@ -169,8 +172,6 @@ object SVMWithSGD {
    * `miniBatchFraction` fraction of the data to calculate the gradient. The weights used in
    * gradient descent are initialized using the initial weights provided.
    *
-   * NOTE: Labels used in SVM should be {0, 1}.
-   *
    * @param input RDD of (label, array of features) pairs.
    * @param numIterations Number of iterations of gradient descent to run.
    * @param stepSize Step size to be used for each iteration of gradient descent.
@@ -178,6 +179,8 @@ object SVMWithSGD {
    * @param miniBatchFraction Fraction of data to be used per iteration.
    * @param initialWeights Initial set of weights to be used. Array should be equal in size to
    *        the number of features in the data.
+   *
+   * @note Labels used in SVM should be {0, 1}.
    */
   @Since("0.8.0")
   def train(
@@ -195,7 +198,8 @@ object SVMWithSGD {
    * Train a SVM model given an RDD of (label, features) pairs. We run a fixed number
    * of iterations of gradient descent using the specified step size. Each iteration uses
    * `miniBatchFraction` fraction of the data to calculate the gradient.
-   * NOTE: Labels used in SVM should be {0, 1}
+   *
+   * @note Labels used in SVM should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param numIterations Number of iterations of gradient descent to run.
@@ -217,13 +221,14 @@ object SVMWithSGD {
    * Train a SVM model given an RDD of (label, features) pairs. We run a fixed number
    * of iterations of gradient descent using the specified step size. We use the entire data set to
    * update the gradient in each iteration.
-   * NOTE: Labels used in SVM should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param stepSize Step size to be used for each iteration of Gradient Descent.
    * @param regParam Regularization parameter.
    * @param numIterations Number of iterations of gradient descent to run.
    * @return a SVMModel which has the weights and offset from training.
+   *
+   * @note Labels used in SVM should be {0, 1}
    */
   @Since("0.8.0")
   def train(
@@ -238,11 +243,12 @@ object SVMWithSGD {
    * Train a SVM model given an RDD of (label, features) pairs. We run a fixed number
    * of iterations of gradient descent using a step size of 1.0. We use the entire data set to
    * update the gradient in each iteration.
-   * NOTE: Labels used in SVM should be {0, 1}
    *
    * @param input RDD of (label, array of features) pairs.
    * @param numIterations Number of iterations of gradient descent to run.
    * @return a SVMModel which has the weights and offset from training.
+   *
+   * @note Labels used in SVM should be {0, 1}
    */
   @Since("0.8.0")
   def train(input: RDD[LabeledPoint], numIterations: Int): SVMModel = {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
index 43193ad..56cdeea 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
@@ -41,14 +41,14 @@ import org.apache.spark.util.Utils
  * While this process is generally guaranteed to converge, it is not guaranteed
  * to find a global optimum.
  *
- * Note: For high-dimensional data (with many features), this algorithm may perform poorly.
- *       This is due to high-dimensional data (a) making it difficult to cluster at all (based
- *       on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions.
- *
  * @param k Number of independent Gaussians in the mixture model.
  * @param convergenceTol Maximum change in log-likelihood at which convergence
  *                       is considered to have occurred.
  * @param maxIterations Maximum number of iterations allowed.
+ *
+ * @note For high-dimensional data (with many features), this algorithm may perform poorly.
+ * This is due to high-dimensional data (a) making it difficult to cluster at all (based
+ * on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions.
  */
 @Since("1.3.0")
 class GaussianMixture private (

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
index ed9c064..fa72b72 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
@@ -56,14 +56,18 @@ class KMeans private (
   def this() = this(2, 20, KMeans.K_MEANS_PARALLEL, 2, 1e-4, Utils.random.nextLong())
 
   /**
-   * Number of clusters to create (k). Note that it is possible for fewer than k clusters to
+   * Number of clusters to create (k).
+   *
+   * @note It is possible for fewer than k clusters to
    * be returned, for example, if there are fewer than k distinct points to cluster.
    */
   @Since("1.4.0")
   def getK: Int = k
 
   /**
-   * Set the number of clusters to create (k). Note that it is possible for fewer than k clusters to
+   * Set the number of clusters to create (k).
+   *
+   * @note It is possible for fewer than k clusters to
    * be returned, for example, if there are fewer than k distinct points to cluster. Default: 2.
    */
   @Since("0.8.0")

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala
index d999b9b..7c52abd 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala
@@ -175,7 +175,7 @@ class LDA private (
    *
    * This is the parameter to a symmetric Dirichlet distribution.
    *
-   * Note: The topics' distributions over terms are called "beta" in the original LDA paper
+   * @note The topics' distributions over terms are called "beta" in the original LDA paper
    * by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009.
    */
   @Since("1.3.0")
@@ -187,7 +187,7 @@ class LDA private (
    *
    * This is the parameter to a symmetric Dirichlet distribution.
    *
-   * Note: The topics' distributions over terms are called "beta" in the original LDA paper
+   * @note The topics' distributions over terms are called "beta" in the original LDA paper
    * by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009.
    *
    * If set to -1, then topicConcentration is set automatically.

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala
index 90d8a55..b5b0e64 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala
@@ -66,7 +66,7 @@ abstract class LDAModel private[clustering] extends Saveable {
    *
    * This is the parameter to a symmetric Dirichlet distribution.
    *
-   * Note: The topics' distributions over terms are called "beta" in the original LDA paper
+   * @note The topics' distributions over terms are called "beta" in the original LDA paper
    * by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009.
    */
   @Since("1.5.0")

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala
index ae324f8..7365ea1 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAOptimizer.scala
@@ -93,9 +93,11 @@ final class EMLDAOptimizer extends LDAOptimizer {
   /**
    * If using checkpointing, this indicates whether to keep the last checkpoint (vs clean up).
    * Deleting the checkpoint can cause failures if a data partition is lost, so set this bit with
-   * care.  Note that checkpoints will be cleaned up via reference counting, regardless.
+   * care.
    *
    * Default: true
+   *
+   * @note Checkpoints will be cleaned up via reference counting, regardless.
    */
   @Since("2.0.0")
   def setKeepLastCheckpoint(keepLastCheckpoint: Boolean): this.type = {
@@ -348,7 +350,7 @@ final class OnlineLDAOptimizer extends LDAOptimizer {
    * Mini-batch fraction in (0, 1], which sets the fraction of document sampled and used in
    * each iteration.
    *
-   * Note that this should be adjusted in synch with [[LDA.setMaxIterations()]]
+   * @note This should be adjusted in synch with [[LDA.setMaxIterations()]]
    * so the entire corpus is used.  Specifically, set both so that
    * maxIterations * miniBatchFraction >= 1.
    *

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/evaluation/AreaUnderCurve.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/AreaUnderCurve.scala b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/AreaUnderCurve.scala
index f077949..003d141 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/evaluation/AreaUnderCurve.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/evaluation/AreaUnderCurve.scala
@@ -39,7 +39,7 @@ private[evaluation] object AreaUnderCurve {
   /**
    * Returns the area under the given curve.
    *
-   * @param curve a RDD of ordered 2D points stored in pairs representing a curve
+   * @param curve an RDD of ordered 2D points stored in pairs representing a curve
    */
   def of(curve: RDD[(Double, Double)]): Double = {
     curve.sliding(2).aggregate(0.0)(

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
index fbd217a..c94d789 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
@@ -40,7 +40,7 @@ import org.apache.spark.sql.types._
 /**
  * Represents a numeric vector, whose index type is Int and value type is Double.
  *
- * Note: Users should not implement this interface.
+ * @note Users should not implement this interface.
  */
 @SQLUserDefinedType(udt = classOf[VectorUDT])
 @Since("1.0.0")
@@ -132,7 +132,9 @@ sealed trait Vector extends Serializable {
 
   /**
    * Number of active entries.  An "active entry" is an element which is explicitly stored,
-   * regardless of its value.  Note that inactive entries have value 0.
+   * regardless of its value.
+   *
+   * @note Inactive entries have value 0.
    */
   @Since("1.4.0")
   def numActives: Int

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
index 377be6b..0386675 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
@@ -451,7 +451,7 @@ class BlockMatrix @Since("1.3.0") (
    * [[BlockMatrix]] will only consist of blocks of [[DenseMatrix]]. This may cause
    * some performance issues until support for multiplying two sparse matrices is added.
    *
-   * Note: The behavior of multiply has changed in 1.6.0. `multiply` used to throw an error when
+   * @note The behavior of multiply has changed in 1.6.0. `multiply` used to throw an error when
    * there were blocks with duplicate indices. Now, the blocks with duplicate indices will be added
    * with each other.
    */

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
index b03b3ec..809906a 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
@@ -188,8 +188,9 @@ class IndexedRowMatrix @Since("1.0.0") (
   }
 
   /**
-   * Computes the Gramian matrix `A^T A`. Note that this cannot be
-   * computed on matrices with more than 65535 columns.
+   * Computes the Gramian matrix `A^T A`.
+   *
+   * @note This cannot be computed on matrices with more than 65535 columns.
    */
   @Since("1.0.0")
   def computeGramianMatrix(): Matrix = {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
index ec32e37..4b12033 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
@@ -106,8 +106,9 @@ class RowMatrix @Since("1.0.0") (
   }
 
   /**
-   * Computes the Gramian matrix `A^T A`. Note that this cannot be computed on matrices with
-   * more than 65535 columns.
+   * Computes the Gramian matrix `A^T A`.
+   *
+   * @note This cannot be computed on matrices with more than 65535 columns.
    */
   @Since("1.0.0")
   def computeGramianMatrix(): Matrix = {
@@ -168,9 +169,6 @@ class RowMatrix @Since("1.0.0") (
    * ARPACK is set to 300 or k * 3, whichever is larger. The numerical tolerance for ARPACK's
    * eigen-decomposition is set to 1e-10.
    *
-   * @note The conditions that decide which method to use internally and the default parameters are
-   *       subject to change.
-   *
    * @param k number of leading singular values to keep (0 &lt; k &lt;= n).
    *          It might return less than k if
    *          there are numerically zero singular values or there are not enough Ritz values
@@ -180,6 +178,9 @@ class RowMatrix @Since("1.0.0") (
    * @param rCond the reciprocal condition number. All singular values smaller than rCond * sigma(0)
    *              are treated as zero, where sigma(0) is the largest singular value.
    * @return SingularValueDecomposition(U, s, V). U = null if computeU = false.
+   *
+   * @note The conditions that decide which method to use internally and the default parameters are
+   * subject to change.
    */
   @Since("1.0.0")
   def computeSVD(
@@ -319,9 +320,11 @@ class RowMatrix @Since("1.0.0") (
   }
 
   /**
-   * Computes the covariance matrix, treating each row as an observation. Note that this cannot
-   * be computed on matrices with more than 65535 columns.
+   * Computes the covariance matrix, treating each row as an observation.
+   *
    * @return a local dense matrix of size n x n
+   *
+   * @note This cannot be computed on matrices with more than 65535 columns.
    */
   @Since("1.0.0")
   def computeCovariance(): Matrix = {
@@ -369,12 +372,12 @@ class RowMatrix @Since("1.0.0") (
    * The row data do not need to be "centered" first; it is not necessary for
    * the mean of each column to be 0.
    *
-   * Note that this cannot be computed on matrices with more than 65535 columns.
-   *
    * @param k number of top principal components.
    * @return a matrix of size n-by-k, whose columns are principal components, and
    * a vector of values which indicate how much variance each principal component
    * explains
+   *
+   * @note This cannot be computed on matrices with more than 65535 columns.
    */
   @Since("1.6.0")
   def computePrincipalComponentsAndExplainedVariance(k: Int): (Matrix, Vector) = {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala
index 81e64de..c49e726 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala
@@ -305,7 +305,8 @@ class LeastSquaresGradient extends Gradient {
  * :: DeveloperApi ::
  * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification.
  * See also the documentation for the precise formulation.
- * NOTE: This assumes that the labels are {0,1}
+ *
+ * @note This assumes that the labels are {0,1}
  */
 @DeveloperApi
 class HingeGradient extends Gradient {

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/rdd/RDDFunctions.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/rdd/RDDFunctions.scala b/mllib/src/main/scala/org/apache/spark/mllib/rdd/RDDFunctions.scala
index 0f7857b..0051196 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/rdd/RDDFunctions.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/rdd/RDDFunctions.scala
@@ -31,7 +31,7 @@ import org.apache.spark.rdd.RDD
 class RDDFunctions[T: ClassTag](self: RDD[T]) extends Serializable {
 
   /**
-   * Returns a RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding
+   * Returns an RDD from grouping items of its parent RDD in fixed size blocks by passing a sliding
    * window over them. The ordering is first based on the partition index and then the ordering of
    * items within each partition. This is similar to sliding in Scala collections, except that it
    * becomes an empty RDD if the window size is greater than the total number of items. It needs to

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala
index c642573..24e4dcc 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/MatrixFactorizationModel.scala
@@ -43,14 +43,14 @@ import org.apache.spark.storage.StorageLevel
 /**
  * Model representing the result of matrix factorization.
  *
- * Note: If you create the model directly using constructor, please be aware that fast prediction
- * requires cached user/product features and their associated partitioners.
- *
  * @param rank Rank for the features in this model.
  * @param userFeatures RDD of tuples where each tuple represents the userId and
  *                     the features computed for this user.
  * @param productFeatures RDD of tuples where each tuple represents the productId
  *                        and the features computed for this product.
+ *
+ * @note If you create the model directly using constructor, please be aware that fast prediction
+ * requires cached user/product features and their associated partitioners.
  */
 @Since("0.8.0")
 class MatrixFactorizationModel @Since("0.8.0") (

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/stat/Statistics.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/stat/Statistics.scala b/mllib/src/main/scala/org/apache/spark/mllib/stat/Statistics.scala
index f3159f7..925fdf4 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/stat/Statistics.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/stat/Statistics.scala
@@ -60,15 +60,15 @@ object Statistics {
    * Compute the correlation matrix for the input RDD of Vectors using the specified method.
    * Methods currently supported: `pearson` (default), `spearman`.
    *
-   * Note that for Spearman, a rank correlation, we need to create an RDD[Double] for each column
-   * and sort it in order to retrieve the ranks and then join the columns back into an RDD[Vector],
-   * which is fairly costly. Cache the input RDD before calling corr with `method = "spearman"` to
-   * avoid recomputing the common lineage.
-   *
    * @param X an RDD[Vector] for which the correlation matrix is to be computed.
    * @param method String specifying the method to use for computing correlation.
    *               Supported: `pearson` (default), `spearman`
    * @return Correlation matrix comparing columns in X.
+   *
+   * @note For Spearman, a rank correlation, we need to create an RDD[Double] for each column
+   * and sort it in order to retrieve the ranks and then join the columns back into an RDD[Vector],
+   * which is fairly costly. Cache the input RDD before calling corr with `method = "spearman"` to
+   * avoid recomputing the common lineage.
    */
   @Since("1.1.0")
   def corr(X: RDD[Vector], method: String): Matrix = Correlations.corrMatrix(X, method)
@@ -77,12 +77,12 @@ object Statistics {
    * Compute the Pearson correlation for the input RDDs.
    * Returns NaN if either vector has 0 variance.
    *
-   * Note: the two input RDDs need to have the same number of partitions and the same number of
-   * elements in each partition.
-   *
    * @param x RDD[Double] of the same cardinality as y.
    * @param y RDD[Double] of the same cardinality as x.
    * @return A Double containing the Pearson correlation between the two input RDD[Double]s
+   *
+   * @note The two input RDDs need to have the same number of partitions and the same number of
+   * elements in each partition.
    */
   @Since("1.1.0")
   def corr(x: RDD[Double], y: RDD[Double]): Double = Correlations.corr(x, y)
@@ -98,15 +98,15 @@ object Statistics {
    * Compute the correlation for the input RDDs using the specified method.
    * Methods currently supported: `pearson` (default), `spearman`.
    *
-   * Note: the two input RDDs need to have the same number of partitions and the same number of
-   * elements in each partition.
-   *
    * @param x RDD[Double] of the same cardinality as y.
    * @param y RDD[Double] of the same cardinality as x.
    * @param method String specifying the method to use for computing correlation.
    *               Supported: `pearson` (default), `spearman`
    * @return A Double containing the correlation between the two input RDD[Double]s using the
    *         specified method.
+   *
+   * @note The two input RDDs need to have the same number of partitions and the same number of
+   * elements in each partition.
    */
   @Since("1.1.0")
   def corr(x: RDD[Double], y: RDD[Double], method: String): Double = Correlations.corr(x, y, method)
@@ -122,15 +122,15 @@ object Statistics {
    * Conduct Pearson's chi-squared goodness of fit test of the observed data against the
    * expected distribution.
    *
-   * Note: the two input Vectors need to have the same size.
-   *       `observed` cannot contain negative values.
-   *       `expected` cannot contain nonpositive values.
-   *
    * @param observed Vector containing the observed categorical counts/relative frequencies.
    * @param expected Vector containing the expected categorical counts/relative frequencies.
    *                 `expected` is rescaled if the `expected` sum differs from the `observed` sum.
    * @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
    *         the method used, and the null hypothesis.
+   *
+   * @note The two input Vectors need to have the same size.
+   * `observed` cannot contain negative values.
+   * `expected` cannot contain nonpositive values.
    */
   @Since("1.1.0")
   def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResult = {
@@ -141,11 +141,11 @@ object Statistics {
    * Conduct Pearson's chi-squared goodness of fit test of the observed data against the uniform
    * distribution, with each category having an expected frequency of `1 / observed.size`.
    *
-   * Note: `observed` cannot contain negative values.
-   *
    * @param observed Vector containing the observed categorical counts/relative frequencies.
    * @return ChiSquaredTest object containing the test statistic, degrees of freedom, p-value,
    *         the method used, and the null hypothesis.
+   *
+   * @note `observed` cannot contain negative values.
    */
   @Since("1.1.0")
   def chiSqTest(observed: Vector): ChiSqTestResult = ChiSqTest.chiSquared(observed)

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala
index 36feab7..d846c43 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/DecisionTree.scala
@@ -75,10 +75,6 @@ object DecisionTree extends Serializable with Logging {
    * Method to train a decision tree model.
    * The method supports binary and multiclass classification and regression.
    *
-   * Note: Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
-   *       and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
-   *       is recommended to clearly separate classification and regression.
-   *
    * @param input Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
    *              For classification, labels should take values {0, 1, ..., numClasses-1}.
    *              For regression, labels are real numbers.
@@ -86,6 +82,10 @@ object DecisionTree extends Serializable with Logging {
    *                 of decision tree (classification or regression), feature type (continuous,
    *                 categorical), depth of the tree, quantile calculation strategy, etc.
    * @return DecisionTreeModel that can be used for prediction.
+   *
+   * @note Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
+   * and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
+   * is recommended to clearly separate classification and regression.
    */
   @Since("1.0.0")
   def train(input: RDD[LabeledPoint], strategy: Strategy): DecisionTreeModel = {
@@ -96,10 +96,6 @@ object DecisionTree extends Serializable with Logging {
    * Method to train a decision tree model.
    * The method supports binary and multiclass classification and regression.
    *
-   * Note: Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
-   *       and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
-   *       is recommended to clearly separate classification and regression.
-   *
    * @param input Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
    *              For classification, labels should take values {0, 1, ..., numClasses-1}.
    *              For regression, labels are real numbers.
@@ -108,6 +104,10 @@ object DecisionTree extends Serializable with Logging {
    * @param maxDepth Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means
    *                 1 internal node + 2 leaf nodes).
    * @return DecisionTreeModel that can be used for prediction.
+   *
+   * @note Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
+   * and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
+   * is recommended to clearly separate classification and regression.
    */
   @Since("1.0.0")
   def train(
@@ -123,10 +123,6 @@ object DecisionTree extends Serializable with Logging {
    * Method to train a decision tree model.
    * The method supports binary and multiclass classification and regression.
    *
-   * Note: Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
-   *       and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
-   *       is recommended to clearly separate classification and regression.
-   *
    * @param input Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
    *              For classification, labels should take values {0, 1, ..., numClasses-1}.
    *              For regression, labels are real numbers.
@@ -136,6 +132,10 @@ object DecisionTree extends Serializable with Logging {
    *                 1 internal node + 2 leaf nodes).
    * @param numClasses Number of classes for classification. Default value of 2.
    * @return DecisionTreeModel that can be used for prediction.
+   *
+   * @note Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
+   * and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
+   * is recommended to clearly separate classification and regression.
    */
   @Since("1.2.0")
   def train(
@@ -152,10 +152,6 @@ object DecisionTree extends Serializable with Logging {
    * Method to train a decision tree model.
    * The method supports binary and multiclass classification and regression.
    *
-   * Note: Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
-   *       and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
-   *       is recommended to clearly separate classification and regression.
-   *
    * @param input Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
    *              For classification, labels should take values {0, 1, ..., numClasses-1}.
    *              For regression, labels are real numbers.
@@ -170,6 +166,10 @@ object DecisionTree extends Serializable with Logging {
    *                                indicates that feature n is categorical with k categories
    *                                indexed from 0: {0, 1, ..., k-1}.
    * @return DecisionTreeModel that can be used for prediction.
+   *
+   * @note Using [[org.apache.spark.mllib.tree.DecisionTree$#trainClassifier]]
+   * and [[org.apache.spark.mllib.tree.DecisionTree$#trainRegressor]]
+   * is recommended to clearly separate classification and regression.
    */
   @Since("1.0.0")
   def train(

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/tree/loss/Loss.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/loss/Loss.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/loss/Loss.scala
index de14ddf..09274a2 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/tree/loss/Loss.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/loss/Loss.scala
@@ -42,11 +42,13 @@ trait Loss extends Serializable {
 
   /**
    * Method to calculate error of the base learner for the gradient boosting calculation.
-   * Note: This method is not used by the gradient boosting algorithm but is useful for debugging
-   * purposes.
+   *
    * @param model Model of the weak learner.
    * @param data Training dataset: RDD of [[org.apache.spark.mllib.regression.LabeledPoint]].
    * @return Measure of model error on data
+   *
+   * @note This method is not used by the gradient boosting algorithm but is useful for debugging
+   * purposes.
    */
   @Since("1.2.0")
   def computeError(model: TreeEnsembleModel, data: RDD[LabeledPoint]): Double = {
@@ -55,11 +57,13 @@ trait Loss extends Serializable {
 
   /**
    * Method to calculate loss when the predictions are already known.
-   * Note: This method is used in the method evaluateEachIteration to avoid recomputing the
-   * predicted values from previously fit trees.
+   *
    * @param prediction Predicted label.
    * @param label True label.
    * @return Measure of model error on datapoint.
+   *
+   * @note This method is used in the method evaluateEachIteration to avoid recomputing the
+   * predicted values from previously fit trees.
    */
   private[spark] def computeError(prediction: Double, label: Double): Double
 }

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala
index 657ed0a..2999507 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/tree/model/treeEnsembleModels.scala
@@ -187,7 +187,7 @@ object GradientBoostedTreesModel extends Loader[GradientBoostedTreesModel] {
    * @param initTreeWeight: learning rate assigned to the first tree.
    * @param initTree: first DecisionTreeModel.
    * @param loss: evaluation metric.
-   * @return a RDD with each element being a zip of the prediction and error
+   * @return an RDD with each element being a zip of the prediction and error
    *         corresponding to every sample.
    */
   @Since("1.4.0")
@@ -213,7 +213,7 @@ object GradientBoostedTreesModel extends Loader[GradientBoostedTreesModel] {
    * @param treeWeight: Learning rate.
    * @param tree: Tree using which the prediction and error should be updated.
    * @param loss: evaluation metric.
-   * @return a RDD with each element being a zip of the prediction and error
+   * @return an RDD with each element being a zip of the prediction and error
    *         corresponding to each sample.
    */
   @Since("1.4.0")

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/pom.xml
----------------------------------------------------------------------
diff --git a/pom.xml b/pom.xml
index 650b4cd..024b285 100644
--- a/pom.xml
+++ b/pom.xml
@@ -2476,6 +2476,13 @@
             <artifactId>maven-javadoc-plugin</artifactId>
             <configuration>
               <additionalparam>-Xdoclint:all -Xdoclint:-missing</additionalparam>
+              <tags>
+                <tag>
+                  <name>note</name>
+                  <placement>a</placement>
+                  <head>Note:</head>
+                </tag>
+              </tags>
             </configuration>
           </plugin>
         </plugins>

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/project/SparkBuild.scala
----------------------------------------------------------------------
diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala
index 2d3a95b..92b4565 100644
--- a/project/SparkBuild.scala
+++ b/project/SparkBuild.scala
@@ -741,7 +741,8 @@ object Unidoc {
     javacOptions in (JavaUnidoc, unidoc) := Seq(
       "-windowtitle", "Spark " + version.value.replaceAll("-SNAPSHOT", "") + " JavaDoc",
       "-public",
-      "-noqualifier", "java.lang"
+      "-noqualifier", "java.lang",
+      "-tag", """note:a:Note\:"""
     ),
 
     // Use GitHub repository for Scaladoc source links

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/python/pyspark/mllib/stat/KernelDensity.py
----------------------------------------------------------------------
diff --git a/python/pyspark/mllib/stat/KernelDensity.py b/python/pyspark/mllib/stat/KernelDensity.py
index 3b1c551..7250eab 100644
--- a/python/pyspark/mllib/stat/KernelDensity.py
+++ b/python/pyspark/mllib/stat/KernelDensity.py
@@ -28,7 +28,7 @@ from pyspark.rdd import RDD
 
 class KernelDensity(object):
     """
-    Estimate probability density at required points given a RDD of samples
+    Estimate probability density at required points given an RDD of samples
     from the population.
 
     >>> kd = KernelDensity()

http://git-wip-us.apache.org/repos/asf/spark/blob/d5b1d5fc/python/pyspark/mllib/util.py
----------------------------------------------------------------------
diff --git a/python/pyspark/mllib/util.py b/python/pyspark/mllib/util.py
index ed6fd4b..9775580 100644
--- a/python/pyspark/mllib/util.py
+++ b/python/pyspark/mllib/util.py
@@ -499,7 +499,7 @@ class LinearDataGenerator(object):
     def generateLinearRDD(sc, nexamples, nfeatures, eps,
                           nParts=2, intercept=0.0):
         """
-        Generate a RDD of LabeledPoints.
+        Generate an RDD of LabeledPoints.
         """
         return callMLlibFunc(
             "generateLinearRDDWrapper", sc, int(nexamples), int(nfeatures),


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message