spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From m...@apache.org
Subject spark git commit: [SPARK-11550][DOCS] Replace example code in mllib-optimization.md using include_example
Date Tue, 10 Nov 2015 22:47:13 GMT
Repository: spark
Updated Branches:
  refs/heads/branch-1.6 8fb7b8304 -> 6a74efab0


[SPARK-11550][DOCS] Replace example code in mllib-optimization.md using include_example

Author: Pravin Gadakh <pravingadakh177@gmail.com>

Closes #9516 from pravingadakh/SPARK-11550.

(cherry picked from commit 638c51d9380081b3b8182be2c2460bd53b8b0a4f)
Signed-off-by: Xiangrui Meng <meng@databricks.com>


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/6a74efab
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/6a74efab
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/6a74efab

Branch: refs/heads/branch-1.6
Commit: 6a74efab0e4c2f41c19412aa097df64b58f36a2c
Parents: 8fb7b83
Author: Pravin Gadakh <pravingadakh177@gmail.com>
Authored: Tue Nov 10 14:47:04 2015 -0800
Committer: Xiangrui Meng <meng@databricks.com>
Committed: Tue Nov 10 14:47:10 2015 -0800

----------------------------------------------------------------------
 docs/mllib-optimization.md                      | 145 +------------------
 .../spark/examples/mllib/JavaLBFGSExample.java  | 108 ++++++++++++++
 .../spark/examples/mllib/LBFGSExample.scala     |  90 ++++++++++++
 3 files changed, 200 insertions(+), 143 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/6a74efab/docs/mllib-optimization.md
----------------------------------------------------------------------
diff --git a/docs/mllib-optimization.md b/docs/mllib-optimization.md
index a3bd130..ad7bcd9 100644
--- a/docs/mllib-optimization.md
+++ b/docs/mllib-optimization.md
@@ -220,154 +220,13 @@ L-BFGS optimizer.
 <div data-lang="scala" markdown="1">
 Refer to the [`LBFGS` Scala docs](api/scala/index.html#org.apache.spark.mllib.optimization.LBFGS)
and [`SquaredL2Updater` Scala docs](api/scala/index.html#org.apache.spark.mllib.optimization.SquaredL2Updater)
for details on the API.
 
-{% highlight scala %}
-import org.apache.spark.SparkContext
-import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
-import org.apache.spark.mllib.linalg.Vectors
-import org.apache.spark.mllib.util.MLUtils
-import org.apache.spark.mllib.classification.LogisticRegressionModel
-import org.apache.spark.mllib.optimization.{LBFGS, LogisticGradient, SquaredL2Updater}
-
-val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
-val numFeatures = data.take(1)(0).features.size
-
-// Split data into training (60%) and test (40%).
-val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
-
-// Append 1 into the training data as intercept.
-val training = splits(0).map(x => (x.label, MLUtils.appendBias(x.features))).cache()
-
-val test = splits(1)
-
-// Run training algorithm to build the model
-val numCorrections = 10
-val convergenceTol = 1e-4
-val maxNumIterations = 20
-val regParam = 0.1
-val initialWeightsWithIntercept = Vectors.dense(new Array[Double](numFeatures + 1))
-
-val (weightsWithIntercept, loss) = LBFGS.runLBFGS(
-  training,
-  new LogisticGradient(),
-  new SquaredL2Updater(),
-  numCorrections,
-  convergenceTol,
-  maxNumIterations,
-  regParam,
-  initialWeightsWithIntercept)
-
-val model = new LogisticRegressionModel(
-  Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)),
-  weightsWithIntercept(weightsWithIntercept.size - 1))
-
-// Clear the default threshold.
-model.clearThreshold()
-
-// Compute raw scores on the test set.
-val scoreAndLabels = test.map { point =>
-  val score = model.predict(point.features)
-  (score, point.label)
-}
-
-// Get evaluation metrics.
-val metrics = new BinaryClassificationMetrics(scoreAndLabels)
-val auROC = metrics.areaUnderROC()
-
-println("Loss of each step in training process")
-loss.foreach(println)
-println("Area under ROC = " + auROC)
-{% endhighlight %}
+{% include_example scala/org/apache/spark/examples/mllib/LBFGSExample.scala %}
 </div>
 
 <div data-lang="java" markdown="1">
 Refer to the [`LBFGS` Java docs](api/java/org/apache/spark/mllib/optimization/LBFGS.html)
and [`SquaredL2Updater` Java docs](api/java/org/apache/spark/mllib/optimization/SquaredL2Updater.html)
for details on the API.
 
-{% highlight java %}
-import java.util.Arrays;
-import java.util.Random;
-
-import scala.Tuple2;
-
-import org.apache.spark.api.java.*;
-import org.apache.spark.api.java.function.Function;
-import org.apache.spark.mllib.classification.LogisticRegressionModel;
-import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics;
-import org.apache.spark.mllib.linalg.Vector;
-import org.apache.spark.mllib.linalg.Vectors;
-import org.apache.spark.mllib.optimization.*;
-import org.apache.spark.mllib.regression.LabeledPoint;
-import org.apache.spark.mllib.util.MLUtils;
-import org.apache.spark.SparkConf;
-import org.apache.spark.SparkContext;
-
-public class LBFGSExample {
-  public static void main(String[] args) {
-    SparkConf conf = new SparkConf().setAppName("L-BFGS Example");
-    SparkContext sc = new SparkContext(conf);
-    String path = "data/mllib/sample_libsvm_data.txt";
-    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
-    int numFeatures = data.take(1).get(0).features().size();
-    
-    // Split initial RDD into two... [60% training data, 40% testing data].
-    JavaRDD<LabeledPoint> trainingInit = data.sample(false, 0.6, 11L);
-    JavaRDD<LabeledPoint> test = data.subtract(trainingInit);
-    
-    // Append 1 into the training data as intercept.
-    JavaRDD<Tuple2<Object, Vector>> training = data.map(
-      new Function<LabeledPoint, Tuple2<Object, Vector>>() {
-        public Tuple2<Object, Vector> call(LabeledPoint p) {
-          return new Tuple2<Object, Vector>(p.label(), MLUtils.appendBias(p.features()));
-        }
-      });
-    training.cache();
-
-    // Run training algorithm to build the model.
-    int numCorrections = 10;
-    double convergenceTol = 1e-4;
-    int maxNumIterations = 20;
-    double regParam = 0.1;
-    Vector initialWeightsWithIntercept = Vectors.dense(new double[numFeatures + 1]);
-
-    Tuple2<Vector, double[]> result = LBFGS.runLBFGS(
-      training.rdd(),
-      new LogisticGradient(),
-      new SquaredL2Updater(),
-      numCorrections,
-      convergenceTol,
-      maxNumIterations,
-      regParam,
-      initialWeightsWithIntercept);
-    Vector weightsWithIntercept = result._1();
-    double[] loss = result._2();
-
-    final LogisticRegressionModel model = new LogisticRegressionModel(
-      Vectors.dense(Arrays.copyOf(weightsWithIntercept.toArray(), weightsWithIntercept.size()
- 1)),
-      (weightsWithIntercept.toArray())[weightsWithIntercept.size() - 1]);
-
-    // Clear the default threshold.
-    model.clearThreshold();
-
-    // Compute raw scores on the test set.
-    JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(
-      new Function<LabeledPoint, Tuple2<Object, Object>>() {
-      public Tuple2<Object, Object> call(LabeledPoint p) {
-        Double score = model.predict(p.features());
-        return new Tuple2<Object, Object>(score, p.label());
-      }
-    });
-
-    // Get evaluation metrics.
-    BinaryClassificationMetrics metrics = 
-      new BinaryClassificationMetrics(scoreAndLabels.rdd());
-    double auROC = metrics.areaUnderROC();
-     
-    System.out.println("Loss of each step in training process");
-    for (double l : loss)
-      System.out.println(l);
-    System.out.println("Area under ROC = " + auROC);
-  }
-}
-{% endhighlight %}
+{% include_example java/org/apache/spark/examples/mllib/JavaLBFGSExample.java %}
 </div>
 </div>
 

http://git-wip-us.apache.org/repos/asf/spark/blob/6a74efab/examples/src/main/java/org/apache/spark/examples/mllib/JavaLBFGSExample.java
----------------------------------------------------------------------
diff --git a/examples/src/main/java/org/apache/spark/examples/mllib/JavaLBFGSExample.java
b/examples/src/main/java/org/apache/spark/examples/mllib/JavaLBFGSExample.java
new file mode 100644
index 0000000..355883f
--- /dev/null
+++ b/examples/src/main/java/org/apache/spark/examples/mllib/JavaLBFGSExample.java
@@ -0,0 +1,108 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.mllib;
+
+// $example on$
+import java.util.Arrays;
+
+import scala.Tuple2;
+
+import org.apache.spark.api.java.*;
+import org.apache.spark.api.java.function.Function;
+import org.apache.spark.mllib.classification.LogisticRegressionModel;
+import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics;
+import org.apache.spark.mllib.linalg.Vector;
+import org.apache.spark.mllib.linalg.Vectors;
+import org.apache.spark.mllib.optimization.*;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.SparkConf;
+import org.apache.spark.SparkContext;
+// $example off$
+
+public class JavaLBFGSExample {
+  public static void main(String[] args) {
+    SparkConf conf = new SparkConf().setAppName("L-BFGS Example");
+    SparkContext sc = new SparkContext(conf);
+
+    // $example on$
+    String path = "data/mllib/sample_libsvm_data.txt";
+    JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
+    int numFeatures = data.take(1).get(0).features().size();
+
+    // Split initial RDD into two... [60% training data, 40% testing data].
+    JavaRDD<LabeledPoint> trainingInit = data.sample(false, 0.6, 11L);
+    JavaRDD<LabeledPoint> test = data.subtract(trainingInit);
+
+    // Append 1 into the training data as intercept.
+    JavaRDD<Tuple2<Object, Vector>> training = data.map(
+      new Function<LabeledPoint, Tuple2<Object, Vector>>() {
+        public Tuple2<Object, Vector> call(LabeledPoint p) {
+          return new Tuple2<Object, Vector>(p.label(), MLUtils.appendBias(p.features()));
+        }
+      });
+    training.cache();
+
+    // Run training algorithm to build the model.
+    int numCorrections = 10;
+    double convergenceTol = 1e-4;
+    int maxNumIterations = 20;
+    double regParam = 0.1;
+    Vector initialWeightsWithIntercept = Vectors.dense(new double[numFeatures + 1]);
+
+    Tuple2<Vector, double[]> result = LBFGS.runLBFGS(
+      training.rdd(),
+      new LogisticGradient(),
+      new SquaredL2Updater(),
+      numCorrections,
+      convergenceTol,
+      maxNumIterations,
+      regParam,
+      initialWeightsWithIntercept);
+    Vector weightsWithIntercept = result._1();
+    double[] loss = result._2();
+
+    final LogisticRegressionModel model = new LogisticRegressionModel(
+      Vectors.dense(Arrays.copyOf(weightsWithIntercept.toArray(), weightsWithIntercept.size()
- 1)),
+      (weightsWithIntercept.toArray())[weightsWithIntercept.size() - 1]);
+
+    // Clear the default threshold.
+    model.clearThreshold();
+
+    // Compute raw scores on the test set.
+    JavaRDD<Tuple2<Object, Object>> scoreAndLabels = test.map(
+      new Function<LabeledPoint, Tuple2<Object, Object>>() {
+        public Tuple2<Object, Object> call(LabeledPoint p) {
+          Double score = model.predict(p.features());
+          return new Tuple2<Object, Object>(score, p.label());
+        }
+      });
+
+    // Get evaluation metrics.
+    BinaryClassificationMetrics metrics =
+      new BinaryClassificationMetrics(scoreAndLabels.rdd());
+    double auROC = metrics.areaUnderROC();
+
+    System.out.println("Loss of each step in training process");
+    for (double l : loss)
+      System.out.println(l);
+    System.out.println("Area under ROC = " + auROC);
+    // $example off$
+  }
+}
+

http://git-wip-us.apache.org/repos/asf/spark/blob/6a74efab/examples/src/main/scala/org/apache/spark/examples/mllib/LBFGSExample.scala
----------------------------------------------------------------------
diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/LBFGSExample.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/LBFGSExample.scala
new file mode 100644
index 0000000..61d2e77
--- /dev/null
+++ b/examples/src/main/scala/org/apache/spark/examples/mllib/LBFGSExample.scala
@@ -0,0 +1,90 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+// scalastyle:off println
+package org.apache.spark.examples.mllib
+
+// $example on$
+import org.apache.spark.mllib.classification.LogisticRegressionModel
+import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
+import org.apache.spark.mllib.linalg.Vectors
+import org.apache.spark.mllib.optimization.{LBFGS, LogisticGradient, SquaredL2Updater}
+import org.apache.spark.mllib.util.MLUtils
+// $example off$
+
+import org.apache.spark.{SparkConf, SparkContext}
+
+object LBFGSExample {
+
+  def main(args: Array[String]): Unit = {
+
+    val conf = new SparkConf().setAppName("LBFGSExample")
+    val sc = new SparkContext(conf)
+
+    // $example on$
+    val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
+    val numFeatures = data.take(1)(0).features.size
+
+    // Split data into training (60%) and test (40%).
+    val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
+
+    // Append 1 into the training data as intercept.
+    val training = splits(0).map(x => (x.label, MLUtils.appendBias(x.features))).cache()
+
+    val test = splits(1)
+
+    // Run training algorithm to build the model
+    val numCorrections = 10
+    val convergenceTol = 1e-4
+    val maxNumIterations = 20
+    val regParam = 0.1
+    val initialWeightsWithIntercept = Vectors.dense(new Array[Double](numFeatures + 1))
+
+    val (weightsWithIntercept, loss) = LBFGS.runLBFGS(
+      training,
+      new LogisticGradient(),
+      new SquaredL2Updater(),
+      numCorrections,
+      convergenceTol,
+      maxNumIterations,
+      regParam,
+      initialWeightsWithIntercept)
+
+    val model = new LogisticRegressionModel(
+      Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)),
+      weightsWithIntercept(weightsWithIntercept.size - 1))
+
+    // Clear the default threshold.
+    model.clearThreshold()
+
+    // Compute raw scores on the test set.
+    val scoreAndLabels = test.map { point =>
+      val score = model.predict(point.features)
+      (score, point.label)
+    }
+
+    // Get evaluation metrics.
+    val metrics = new BinaryClassificationMetrics(scoreAndLabels)
+    val auROC = metrics.areaUnderROC()
+
+    println("Loss of each step in training process")
+    loss.foreach(println)
+    println("Area under ROC = " + auROC)
+    // $example off$
+  }
+}
+// scalastyle:on println


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message