spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From m...@apache.org
Subject spark git commit: [SPARK-8920] [MLLIB] Add @since tags to mllib.linalg
Date Mon, 17 Aug 2015 23:00:17 GMT
Repository: spark
Updated Branches:
  refs/heads/master fdaf17f63 -> 088b11ec5


[SPARK-8920] [MLLIB] Add @since tags to mllib.linalg

Author: Sameer Abhyankar <sabhyankar@sabhyankar-MBP.Samavihome>
Author: Sameer Abhyankar <sabhyankar@sabhyankar-MBP.local>

Closes #7729 from sabhyankar/branch_8920.


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/088b11ec
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/088b11ec
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/088b11ec

Branch: refs/heads/master
Commit: 088b11ec5949e135cb3db2a1ce136837e046c288
Parents: fdaf17f
Author: Sameer Abhyankar <sabhyankar@sabhyankar-MBP.Samavihome>
Authored: Mon Aug 17 16:00:23 2015 -0700
Committer: Xiangrui Meng <meng@databricks.com>
Committed: Mon Aug 17 16:00:23 2015 -0700

----------------------------------------------------------------------
 .../apache/spark/mllib/linalg/Matrices.scala    | 63 ++++++++++++++++++++
 .../linalg/SingularValueDecomposition.scala     |  1 +
 .../org/apache/spark/mllib/linalg/Vectors.scala | 60 +++++++++++++++++++
 .../mllib/linalg/distributed/BlockMatrix.scala  | 43 +++++++++++--
 .../linalg/distributed/CoordinateMatrix.scala   | 28 +++++++--
 .../linalg/distributed/DistributedMatrix.scala  |  1 +
 .../linalg/distributed/IndexedRowMatrix.scala   | 24 +++++++-
 .../mllib/linalg/distributed/RowMatrix.scala    | 24 +++++++-
 8 files changed, 227 insertions(+), 17 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala
index 1139ce3..dfa8910 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala
@@ -227,6 +227,7 @@ private[spark] class MatrixUDT extends UserDefinedType[Matrix] {
  * @param values matrix entries in column major if not transposed or in row major otherwise
  * @param isTransposed whether the matrix is transposed. If true, `values` stores the matrix
in
  *                     row major.
+ * @since 1.0.0
  */
 @SQLUserDefinedType(udt = classOf[MatrixUDT])
 class DenseMatrix(
@@ -252,6 +253,7 @@ class DenseMatrix(
    * @param numRows number of rows
    * @param numCols number of columns
    * @param values matrix entries in column major
+   * @since 1.3.0
    */
   def this(numRows: Int, numCols: Int, values: Array[Double]) =
     this(numRows, numCols, values, false)
@@ -276,6 +278,9 @@ class DenseMatrix(
 
   private[mllib] def apply(i: Int): Double = values(i)
 
+  /**
+   * @since 1.3.0
+   */
   override def apply(i: Int, j: Int): Double = values(index(i, j))
 
   private[mllib] def index(i: Int, j: Int): Int = {
@@ -286,6 +291,9 @@ class DenseMatrix(
     values(index(i, j)) = v
   }
 
+  /**
+   * @since 1.4.0
+   */
   override def copy: DenseMatrix = new DenseMatrix(numRows, numCols, values.clone())
 
   private[spark] def map(f: Double => Double) = new DenseMatrix(numRows, numCols, values.map(f),
@@ -301,6 +309,9 @@ class DenseMatrix(
     this
   }
 
+  /**
+   * @since 1.3.0
+   */
   override def transpose: DenseMatrix = new DenseMatrix(numCols, numRows, values, !isTransposed)
 
   private[spark] override def foreachActive(f: (Int, Int, Double) => Unit): Unit = {
@@ -331,13 +342,20 @@ class DenseMatrix(
     }
   }
 
+  /**
+   * @since 1.5.0
+   */
   override def numNonzeros: Int = values.count(_ != 0)
 
+  /**
+   * @since 1.5.0
+   */
   override def numActives: Int = values.length
 
   /**
    * Generate a `SparseMatrix` from the given `DenseMatrix`. The new matrix will have isTransposed
    * set to false.
+   * @since 1.3.0
    */
   def toSparse: SparseMatrix = {
     val spVals: MArrayBuilder[Double] = new MArrayBuilder.ofDouble
@@ -365,6 +383,7 @@ class DenseMatrix(
 
 /**
  * Factory methods for [[org.apache.spark.mllib.linalg.DenseMatrix]].
+ * @since 1.3.0
  */
 object DenseMatrix {
 
@@ -373,6 +392,7 @@ object DenseMatrix {
    * @param numRows number of rows of the matrix
    * @param numCols number of columns of the matrix
    * @return `DenseMatrix` with size `numRows` x `numCols` and values of zeros
+   * @since 1.3.0
    */
   def zeros(numRows: Int, numCols: Int): DenseMatrix = {
     require(numRows.toLong * numCols <= Int.MaxValue,
@@ -385,6 +405,7 @@ object DenseMatrix {
    * @param numRows number of rows of the matrix
    * @param numCols number of columns of the matrix
    * @return `DenseMatrix` with size `numRows` x `numCols` and values of ones
+   * @since 1.3.0
    */
   def ones(numRows: Int, numCols: Int): DenseMatrix = {
     require(numRows.toLong * numCols <= Int.MaxValue,
@@ -396,6 +417,7 @@ object DenseMatrix {
    * Generate an Identity Matrix in `DenseMatrix` format.
    * @param n number of rows and columns of the matrix
    * @return `DenseMatrix` with size `n` x `n` and values of ones on the diagonal
+   * @since 1.3.0
    */
   def eye(n: Int): DenseMatrix = {
     val identity = DenseMatrix.zeros(n, n)
@@ -413,6 +435,7 @@ object DenseMatrix {
    * @param numCols number of columns of the matrix
    * @param rng a random number generator
    * @return `DenseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
+   * @since 1.3.0
    */
   def rand(numRows: Int, numCols: Int, rng: Random): DenseMatrix = {
     require(numRows.toLong * numCols <= Int.MaxValue,
@@ -426,6 +449,7 @@ object DenseMatrix {
    * @param numCols number of columns of the matrix
    * @param rng a random number generator
    * @return `DenseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
+   * @since 1.3.0
    */
   def randn(numRows: Int, numCols: Int, rng: Random): DenseMatrix = {
     require(numRows.toLong * numCols <= Int.MaxValue,
@@ -438,6 +462,7 @@ object DenseMatrix {
    * @param vector a `Vector` that will form the values on the diagonal of the matrix
    * @return Square `DenseMatrix` with size `values.length` x `values.length` and `values`
    *         on the diagonal
+   * @since 1.3.0
    */
   def diag(vector: Vector): DenseMatrix = {
     val n = vector.size
@@ -473,6 +498,7 @@ object DenseMatrix {
  * @param isTransposed whether the matrix is transposed. If true, the matrix can be considered
  *                     Compressed Sparse Row (CSR) format, where `colPtrs` behaves as rowPtrs,
  *                     and `rowIndices` behave as colIndices, and `values` are stored in
row major.
+ * @since 1.2.0
  */
 @SQLUserDefinedType(udt = classOf[MatrixUDT])
 class SparseMatrix(
@@ -510,6 +536,7 @@ class SparseMatrix(
    * @param rowIndices the row index of the entry. They must be in strictly increasing
    *                   order for each column
    * @param values non-zero matrix entries in column major
+   * @since 1.3.0
    */
   def this(
       numRows: Int,
@@ -532,6 +559,9 @@ class SparseMatrix(
      }
   }
 
+  /**
+   * @since 1.3.0
+   */
   override def apply(i: Int, j: Int): Double = {
     val ind = index(i, j)
     if (ind < 0) 0.0 else values(ind)
@@ -555,6 +585,9 @@ class SparseMatrix(
     }
   }
 
+  /**
+   * @since 1.4.0
+   */
   override def copy: SparseMatrix = {
     new SparseMatrix(numRows, numCols, colPtrs, rowIndices, values.clone())
   }
@@ -572,6 +605,9 @@ class SparseMatrix(
     this
   }
 
+  /**
+   * @since 1.3.0
+   */
   override def transpose: SparseMatrix =
     new SparseMatrix(numCols, numRows, colPtrs, rowIndices, values, !isTransposed)
 
@@ -605,19 +641,27 @@ class SparseMatrix(
   /**
    * Generate a `DenseMatrix` from the given `SparseMatrix`. The new matrix will have isTransposed
    * set to false.
+   * @since 1.3.0
    */
   def toDense: DenseMatrix = {
     new DenseMatrix(numRows, numCols, toArray)
   }
 
+  /**
+   * @since 1.5.0
+   */
   override def numNonzeros: Int = values.count(_ != 0)
 
+  /**
+   * @since 1.5.0
+   */
   override def numActives: Int = values.length
 
 }
 
 /**
  * Factory methods for [[org.apache.spark.mllib.linalg.SparseMatrix]].
+ * @since 1.3.0
  */
 object SparseMatrix {
 
@@ -629,6 +673,7 @@ object SparseMatrix {
    * @param numCols number of columns of the matrix
    * @param entries Array of (i, j, value) tuples
    * @return The corresponding `SparseMatrix`
+   * @since 1.3.0
    */
   def fromCOO(numRows: Int, numCols: Int, entries: Iterable[(Int, Int, Double)]): SparseMatrix
= {
     val sortedEntries = entries.toSeq.sortBy(v => (v._2, v._1))
@@ -677,6 +722,7 @@ object SparseMatrix {
    * Generate an Identity Matrix in `SparseMatrix` format.
    * @param n number of rows and columns of the matrix
    * @return `SparseMatrix` with size `n` x `n` and values of ones on the diagonal
+   * @since 1.3.0
    */
   def speye(n: Int): SparseMatrix = {
     new SparseMatrix(n, n, (0 to n).toArray, (0 until n).toArray, Array.fill(n)(1.0))
@@ -746,6 +792,7 @@ object SparseMatrix {
    * @param density the desired density for the matrix
    * @param rng a random number generator
    * @return `SparseMatrix` with size `numRows` x `numCols` and values in U(0, 1)
+   * @since 1.3.0
    */
   def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix = {
     val mat = genRandMatrix(numRows, numCols, density, rng)
@@ -759,6 +806,7 @@ object SparseMatrix {
    * @param density the desired density for the matrix
    * @param rng a random number generator
    * @return `SparseMatrix` with size `numRows` x `numCols` and values in N(0, 1)
+   * @since 1.3.0
    */
   def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): SparseMatrix = {
     val mat = genRandMatrix(numRows, numCols, density, rng)
@@ -770,6 +818,7 @@ object SparseMatrix {
    * @param vector a `Vector` that will form the values on the diagonal of the matrix
    * @return Square `SparseMatrix` with size `values.length` x `values.length` and non-zero
    *         `values` on the diagonal
+   * @since 1.3.0
    */
   def spdiag(vector: Vector): SparseMatrix = {
     val n = vector.size
@@ -786,6 +835,7 @@ object SparseMatrix {
 
 /**
  * Factory methods for [[org.apache.spark.mllib.linalg.Matrix]].
+ * @since 1.0.0
  */
 object Matrices {
 
@@ -795,6 +845,7 @@ object Matrices {
    * @param numRows number of rows
    * @param numCols number of columns
    * @param values matrix entries in column major
+   * @since 1.0.0
    */
   def dense(numRows: Int, numCols: Int, values: Array[Double]): Matrix = {
     new DenseMatrix(numRows, numCols, values)
@@ -808,6 +859,7 @@ object Matrices {
    * @param colPtrs the index corresponding to the start of a new column
    * @param rowIndices the row index of the entry
    * @param values non-zero matrix entries in column major
+   * @since 1.2.0
    */
   def sparse(
      numRows: Int,
@@ -841,6 +893,7 @@ object Matrices {
    * @param numRows number of rows of the matrix
    * @param numCols number of columns of the matrix
    * @return `Matrix` with size `numRows` x `numCols` and values of zeros
+   * @since 1.2.0
    */
   def zeros(numRows: Int, numCols: Int): Matrix = DenseMatrix.zeros(numRows, numCols)
 
@@ -849,6 +902,7 @@ object Matrices {
    * @param numRows number of rows of the matrix
    * @param numCols number of columns of the matrix
    * @return `Matrix` with size `numRows` x `numCols` and values of ones
+   * @since 1.2.0
    */
   def ones(numRows: Int, numCols: Int): Matrix = DenseMatrix.ones(numRows, numCols)
 
@@ -856,6 +910,7 @@ object Matrices {
    * Generate a dense Identity Matrix in `Matrix` format.
    * @param n number of rows and columns of the matrix
    * @return `Matrix` with size `n` x `n` and values of ones on the diagonal
+   * @since 1.2.0
    */
   def eye(n: Int): Matrix = DenseMatrix.eye(n)
 
@@ -863,6 +918,7 @@ object Matrices {
    * Generate a sparse Identity Matrix in `Matrix` format.
    * @param n number of rows and columns of the matrix
    * @return `Matrix` with size `n` x `n` and values of ones on the diagonal
+   * @since 1.3.0
    */
   def speye(n: Int): Matrix = SparseMatrix.speye(n)
 
@@ -872,6 +928,7 @@ object Matrices {
    * @param numCols number of columns of the matrix
    * @param rng a random number generator
    * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
+   * @since 1.2.0
    */
   def rand(numRows: Int, numCols: Int, rng: Random): Matrix =
     DenseMatrix.rand(numRows, numCols, rng)
@@ -883,6 +940,7 @@ object Matrices {
    * @param density the desired density for the matrix
    * @param rng a random number generator
    * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
+   * @since 1.3.0
    */
   def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix =
     SparseMatrix.sprand(numRows, numCols, density, rng)
@@ -893,6 +951,7 @@ object Matrices {
    * @param numCols number of columns of the matrix
    * @param rng a random number generator
    * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
+   * @since 1.2.0
    */
   def randn(numRows: Int, numCols: Int, rng: Random): Matrix =
     DenseMatrix.randn(numRows, numCols, rng)
@@ -904,6 +963,7 @@ object Matrices {
    * @param density the desired density for the matrix
    * @param rng a random number generator
    * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
+   * @since 1.3.0
    */
   def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): Matrix =
     SparseMatrix.sprandn(numRows, numCols, density, rng)
@@ -913,6 +973,7 @@ object Matrices {
    * @param vector a `Vector` that will form the values on the diagonal of the matrix
    * @return Square `Matrix` with size `values.length` x `values.length` and `values`
    *         on the diagonal
+   * @since 1.2.0
    */
   def diag(vector: Vector): Matrix = DenseMatrix.diag(vector)
 
@@ -922,6 +983,7 @@ object Matrices {
    * a sparse matrix. If the Array is empty, an empty `DenseMatrix` will be returned.
    * @param matrices array of matrices
    * @return a single `Matrix` composed of the matrices that were horizontally concatenated
+   * @since 1.3.0
    */
   def horzcat(matrices: Array[Matrix]): Matrix = {
     if (matrices.isEmpty) {
@@ -980,6 +1042,7 @@ object Matrices {
    * a sparse matrix. If the Array is empty, an empty `DenseMatrix` will be returned.
    * @param matrices array of matrices
    * @return a single `Matrix` composed of the matrices that were vertically concatenated
+   * @since 1.3.0
    */
   def vertcat(matrices: Array[Matrix]): Matrix = {
     if (matrices.isEmpty) {

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala
b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala
index cff5dbe..8f504f6 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/SingularValueDecomposition.scala
@@ -22,6 +22,7 @@ import org.apache.spark.annotation.Experimental
 /**
  * :: Experimental ::
  * Represents singular value decomposition (SVD) factors.
+ * @since 1.0.0
  */
 @Experimental
 case class SingularValueDecomposition[UType, VType](U: UType, s: Vector, V: VType)

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
index df15d98..52ef7be 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala
@@ -240,11 +240,13 @@ class VectorUDT extends UserDefinedType[Vector] {
  * Factory methods for [[org.apache.spark.mllib.linalg.Vector]].
  * We don't use the name `Vector` because Scala imports
  * [[scala.collection.immutable.Vector]] by default.
+ * @since 1.0.0
  */
 object Vectors {
 
   /**
    * Creates a dense vector from its values.
+   * @since 1.0.0
    */
   @varargs
   def dense(firstValue: Double, otherValues: Double*): Vector =
@@ -253,6 +255,7 @@ object Vectors {
   // A dummy implicit is used to avoid signature collision with the one generated by @varargs.
   /**
    * Creates a dense vector from a double array.
+   * @since 1.0.0
    */
   def dense(values: Array[Double]): Vector = new DenseVector(values)
 
@@ -262,6 +265,7 @@ object Vectors {
    * @param size vector size.
    * @param indices index array, must be strictly increasing.
    * @param values value array, must have the same length as indices.
+   * @since 1.0.0
    */
   def sparse(size: Int, indices: Array[Int], values: Array[Double]): Vector =
     new SparseVector(size, indices, values)
@@ -271,6 +275,7 @@ object Vectors {
    *
    * @param size vector size.
    * @param elements vector elements in (index, value) pairs.
+   * @since 1.0.0
    */
   def sparse(size: Int, elements: Seq[(Int, Double)]): Vector = {
     require(size > 0, "The size of the requested sparse vector must be greater than 0.")
@@ -292,6 +297,7 @@ object Vectors {
    *
    * @param size vector size.
    * @param elements vector elements in (index, value) pairs.
+   * @since 1.0.0
    */
   def sparse(size: Int, elements: JavaIterable[(JavaInteger, JavaDouble)]): Vector = {
     sparse(size, elements.asScala.map { case (i, x) =>
@@ -304,6 +310,7 @@ object Vectors {
    *
    * @param size vector size
    * @return a zero vector
+   * @since 1.1.0
    */
   def zeros(size: Int): Vector = {
     new DenseVector(new Array[Double](size))
@@ -311,6 +318,7 @@ object Vectors {
 
   /**
    * Parses a string resulted from [[Vector.toString]] into a [[Vector]].
+   * @since 1.1.0
    */
   def parse(s: String): Vector = {
     parseNumeric(NumericParser.parse(s))
@@ -354,6 +362,7 @@ object Vectors {
    * @param vector input vector.
    * @param p norm.
    * @return norm in L^p^ space.
+   * @since 1.3.0
    */
   def norm(vector: Vector, p: Double): Double = {
     require(p >= 1.0, "To compute the p-norm of the vector, we require that you specify
a p>=1. " +
@@ -406,6 +415,7 @@ object Vectors {
    * @param v1 first Vector.
    * @param v2 second Vector.
    * @return squared distance between two Vectors.
+   * @since 1.3.0
    */
   def sqdist(v1: Vector, v2: Vector): Double = {
     require(v1.size == v2.size, s"Vector dimensions do not match: Dim(v1)=${v1.size} and
Dim(v2)" +
@@ -519,20 +529,33 @@ object Vectors {
 
 /**
  * A dense vector represented by a value array.
+ * @since 1.0.0
  */
 @SQLUserDefinedType(udt = classOf[VectorUDT])
 class DenseVector(val values: Array[Double]) extends Vector {
 
+  /**
+   * @since 1.0.0
+   */
   override def size: Int = values.length
 
   override def toString: String = values.mkString("[", ",", "]")
 
+  /**
+   * @since 1.0.0
+   */
   override def toArray: Array[Double] = values
 
   private[spark] override def toBreeze: BV[Double] = new BDV[Double](values)
 
+  /**
+   * @since 1.0.0
+   */
   override def apply(i: Int): Double = values(i)
 
+  /**
+   * @since 1.1.0
+   */
   override def copy: DenseVector = {
     new DenseVector(values.clone())
   }
@@ -564,8 +587,14 @@ class DenseVector(val values: Array[Double]) extends Vector {
     result
   }
 
+  /**
+   * @since 1.4.0
+   */
   override def numActives: Int = size
 
+  /**
+   * @since 1.4.0
+   */
   override def numNonzeros: Int = {
     // same as values.count(_ != 0.0) but faster
     var nnz = 0
@@ -577,6 +606,9 @@ class DenseVector(val values: Array[Double]) extends Vector {
     nnz
   }
 
+  /**
+   * @since 1.4.0
+   */
   override def toSparse: SparseVector = {
     val nnz = numNonzeros
     val ii = new Array[Int](nnz)
@@ -592,6 +624,9 @@ class DenseVector(val values: Array[Double]) extends Vector {
     new SparseVector(size, ii, vv)
   }
 
+  /**
+   * @since 1.5.0
+   */
   override def argmax: Int = {
     if (size == 0) {
       -1
@@ -611,6 +646,9 @@ class DenseVector(val values: Array[Double]) extends Vector {
   }
 }
 
+/**
+ * @since 1.3.0
+ */
 object DenseVector {
   /** Extracts the value array from a dense vector. */
   def unapply(dv: DenseVector): Option[Array[Double]] = Some(dv.values)
@@ -622,6 +660,7 @@ object DenseVector {
  * @param size size of the vector.
  * @param indices index array, assume to be strictly increasing.
  * @param values value array, must have the same length as the index array.
+ * @since 1.0.0
  */
 @SQLUserDefinedType(udt = classOf[VectorUDT])
 class SparseVector(
@@ -638,6 +677,9 @@ class SparseVector(
   override def toString: String =
     s"($size,${indices.mkString("[", ",", "]")},${values.mkString("[", ",", "]")})"
 
+  /**
+   * @since 1.0.0
+   */
   override def toArray: Array[Double] = {
     val data = new Array[Double](size)
     var i = 0
@@ -649,6 +691,9 @@ class SparseVector(
     data
   }
 
+  /**
+   * @since 1.1.0
+   */
   override def copy: SparseVector = {
     new SparseVector(size, indices.clone(), values.clone())
   }
@@ -689,8 +734,14 @@ class SparseVector(
     result
   }
 
+  /**
+   * @since 1.4.0
+   */
   override def numActives: Int = values.length
 
+  /**
+   * @since 1.4.0
+   */
   override def numNonzeros: Int = {
     var nnz = 0
     values.foreach { v =>
@@ -701,6 +752,9 @@ class SparseVector(
     nnz
   }
 
+  /**
+   * @since 1.4.0
+   */
   override def toSparse: SparseVector = {
     val nnz = numNonzeros
     if (nnz == numActives) {
@@ -720,6 +774,9 @@ class SparseVector(
     }
   }
 
+  /**
+   * @since 1.5.0
+   */
   override def argmax: Int = {
     if (size == 0) {
       -1
@@ -790,6 +847,9 @@ class SparseVector(
   }
 }
 
+/**
+ * @since 1.3.0
+ */
 object SparseVector {
   def unapply(sv: SparseVector): Option[(Int, Array[Int], Array[Double])] =
     Some((sv.size, sv.indices, sv.values))

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
index 3323ae7..cfb6680 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/BlockMatrix.scala
@@ -128,6 +128,8 @@ private[mllib] object GridPartitioner {
  *              the number of rows will be calculated when `numRows` is invoked.
  * @param nCols Number of columns of this matrix. If the supplied value is less than or equal
to
  *              zero, the number of columns will be calculated when `numCols` is invoked.
+ * @since 1.3.0
+ *
  */
 @Experimental
 class BlockMatrix(
@@ -149,6 +151,9 @@ class BlockMatrix(
    *                     rows are not required to have the given number of rows
    * @param colsPerBlock Number of columns that make up each block. The blocks forming the
final
    *                     columns are not required to have the given number of columns
+   *
+   * @since 1.3.0
+   *
    */
   def this(
       blocks: RDD[((Int, Int), Matrix)],
@@ -157,11 +162,20 @@ class BlockMatrix(
     this(blocks, rowsPerBlock, colsPerBlock, 0L, 0L)
   }
 
+  /**
+   * @since 1.3.0
+   * */
+
   override def numRows(): Long = {
     if (nRows <= 0L) estimateDim()
     nRows
   }
 
+  /**
+   *
+   * @since 1.3.0
+   */
+
   override def numCols(): Long = {
     if (nCols <= 0L) estimateDim()
     nCols
@@ -192,6 +206,7 @@ class BlockMatrix(
   /**
    * Validates the block matrix info against the matrix data (`blocks`) and throws an exception
if
    * any error is found.
+   * @since 1.3.0
    */
   def validate(): Unit = {
     logDebug("Validating BlockMatrix...")
@@ -228,19 +243,25 @@ class BlockMatrix(
     logDebug("BlockMatrix is valid!")
   }
 
-  /** Caches the underlying RDD. */
+  /** Caches the underlying RDD.
+    * @since 1.3.0
+    * */
   def cache(): this.type = {
     blocks.cache()
     this
   }
 
-  /** Persists the underlying RDD with the specified storage level. */
+  /** Persists the underlying RDD with the specified storage level.
+    * @since 1.3.0
+    * */
   def persist(storageLevel: StorageLevel): this.type = {
     blocks.persist(storageLevel)
     this
   }
 
-  /** Converts to CoordinateMatrix. */
+  /** Converts to CoordinateMatrix.
+    * @since 1.3.0
+    * */
   def toCoordinateMatrix(): CoordinateMatrix = {
     val entryRDD = blocks.flatMap { case ((blockRowIndex, blockColIndex), mat) =>
       val rowStart = blockRowIndex.toLong * rowsPerBlock
@@ -254,7 +275,9 @@ class BlockMatrix(
     new CoordinateMatrix(entryRDD, numRows(), numCols())
   }
 
-  /** Converts to IndexedRowMatrix. The number of columns must be within the integer range.
*/
+  /** Converts to IndexedRowMatrix. The number of columns must be within the integer range.
+    * @since 1.3.0
+    * */
   def toIndexedRowMatrix(): IndexedRowMatrix = {
     require(numCols() < Int.MaxValue, "The number of columns must be within the integer
range. " +
       s"numCols: ${numCols()}")
@@ -262,7 +285,9 @@ class BlockMatrix(
     toCoordinateMatrix().toIndexedRowMatrix()
   }
 
-  /** Collect the distributed matrix on the driver as a `DenseMatrix`. */
+  /** Collect the distributed matrix on the driver as a `DenseMatrix`.
+    * @since 1.3.0
+    * */
   def toLocalMatrix(): Matrix = {
     require(numRows() < Int.MaxValue, "The number of rows of this matrix should be less
than " +
       s"Int.MaxValue. Currently numRows: ${numRows()}")
@@ -288,7 +313,10 @@ class BlockMatrix(
   }
 
   /** Transpose this `BlockMatrix`. Returns a new `BlockMatrix` instance sharing the
-    * same underlying data. Is a lazy operation. */
+    * same underlying data. Is a lazy operation.
+    * @since 1.3.0
+    *
+    * */
   def transpose: BlockMatrix = {
     val transposedBlocks = blocks.map { case ((blockRowIndex, blockColIndex), mat) =>
       ((blockColIndex, blockRowIndex), mat.transpose)
@@ -307,6 +335,7 @@ class BlockMatrix(
     * instances of [[SparseMatrix]], the resulting sub matrix will also be a [[SparseMatrix]],
even
     * if it is being added to a [[DenseMatrix]]. If two dense matrices are added, the output
will
     * also be a [[DenseMatrix]].
+    * @since 1.3.0
     */
   def add(other: BlockMatrix): BlockMatrix = {
     require(numRows() == other.numRows(), "Both matrices must have the same number of rows.
" +
@@ -340,6 +369,8 @@ class BlockMatrix(
     * [[SparseMatrix]], they will have to be converted to a [[DenseMatrix]]. The output
     * [[BlockMatrix]] will only consist of blocks of [[DenseMatrix]]. This may cause
     * some performance issues until support for multiplying two sparse matrices is added.
+    *
+    * @since 1.3.0
     */
   def multiply(other: BlockMatrix): BlockMatrix = {
     require(numCols() == other.numRows(), "The number of columns of A and the number of rows
" +

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala
b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala
index 078d1fa..2b751e4 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/CoordinateMatrix.scala
@@ -29,6 +29,7 @@ import org.apache.spark.mllib.linalg.{Matrix, SparseMatrix, Vectors}
  * @param i row index
  * @param j column index
  * @param value value of the entry
+ * @since 1.0.0
  */
 @Experimental
 case class MatrixEntry(i: Long, j: Long, value: Double)
@@ -42,6 +43,7 @@ case class MatrixEntry(i: Long, j: Long, value: Double)
  *              be determined by the max row index plus one.
  * @param nCols number of columns. A non-positive value means unknown, and then the number
of
  *              columns will be determined by the max column index plus one.
+ * @since 1.0.0
  */
 @Experimental
 class CoordinateMatrix(
@@ -49,10 +51,14 @@ class CoordinateMatrix(
     private var nRows: Long,
     private var nCols: Long) extends DistributedMatrix {
 
-  /** Alternative constructor leaving matrix dimensions to be determined automatically. */
+  /** Alternative constructor leaving matrix dimensions to be determined automatically.
+    * @since 1.0.0
+    * */
   def this(entries: RDD[MatrixEntry]) = this(entries, 0L, 0L)
 
-  /** Gets or computes the number of columns. */
+  /** Gets or computes the number of columns.
+    * @since 1.0.0
+    * */
   override def numCols(): Long = {
     if (nCols <= 0L) {
       computeSize()
@@ -60,7 +66,9 @@ class CoordinateMatrix(
     nCols
   }
 
-  /** Gets or computes the number of rows. */
+  /** Gets or computes the number of rows.
+    * @since 1.0.0
+    * */
   override def numRows(): Long = {
     if (nRows <= 0L) {
       computeSize()
@@ -68,12 +76,16 @@ class CoordinateMatrix(
     nRows
   }
 
-  /** Transposes this CoordinateMatrix. */
+  /** Transposes this CoordinateMatrix.
+    * @since 1.3.0
+    * */
   def transpose(): CoordinateMatrix = {
     new CoordinateMatrix(entries.map(x => MatrixEntry(x.j, x.i, x.value)), numCols(),
numRows())
   }
 
-  /** Converts to IndexedRowMatrix. The number of columns must be within the integer range.
*/
+  /** Converts to IndexedRowMatrix. The number of columns must be within the integer range.
+    * @since 1.0.0
+    * */
   def toIndexedRowMatrix(): IndexedRowMatrix = {
     val nl = numCols()
     if (nl > Int.MaxValue) {
@@ -92,12 +104,15 @@ class CoordinateMatrix(
   /**
    * Converts to RowMatrix, dropping row indices after grouping by row index.
    * The number of columns must be within the integer range.
+   * @since 1.0.0
    */
   def toRowMatrix(): RowMatrix = {
     toIndexedRowMatrix().toRowMatrix()
   }
 
-  /** Converts to BlockMatrix. Creates blocks of [[SparseMatrix]] with size 1024 x 1024.
*/
+  /** Converts to BlockMatrix. Creates blocks of [[SparseMatrix]] with size 1024 x 1024.
+    * @since 1.3.0
+    * */
   def toBlockMatrix(): BlockMatrix = {
     toBlockMatrix(1024, 1024)
   }
@@ -109,6 +124,7 @@ class CoordinateMatrix(
    * @param colsPerBlock The number of columns of each block. The blocks at the right edge
may have
    *                     a smaller value. Must be an integer value greater than 0.
    * @return a [[BlockMatrix]]
+   * @since 1.3.0
    */
   def toBlockMatrix(rowsPerBlock: Int, colsPerBlock: Int): BlockMatrix = {
     require(rowsPerBlock > 0,

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala
b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala
index a0e26ce..98e90af 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/DistributedMatrix.scala
@@ -21,6 +21,7 @@ import breeze.linalg.{DenseMatrix => BDM}
 
 /**
  * Represents a distributively stored matrix backed by one or more RDDs.
+ * @since 1.0.0
  */
 trait DistributedMatrix extends Serializable {
 

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
index 1c33b43..a09f88c 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/IndexedRowMatrix.scala
@@ -27,6 +27,7 @@ import org.apache.spark.mllib.linalg.SingularValueDecomposition
 /**
  * :: Experimental ::
  * Represents a row of [[org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix]].
+ * @since 1.0.0
  */
 @Experimental
 case class IndexedRow(index: Long, vector: Vector)
@@ -41,6 +42,7 @@ case class IndexedRow(index: Long, vector: Vector)
  *              be determined by the max row index plus one.
  * @param nCols number of columns. A non-positive value means unknown, and then the number
of
  *              columns will be determined by the size of the first row.
+ * @since 1.0.0
  */
 @Experimental
 class IndexedRowMatrix(
@@ -48,9 +50,15 @@ class IndexedRowMatrix(
     private var nRows: Long,
     private var nCols: Int) extends DistributedMatrix {
 
-  /** Alternative constructor leaving matrix dimensions to be determined automatically. */
+  /** Alternative constructor leaving matrix dimensions to be determined automatically.
+    * @since 1.0.0
+    * */
   def this(rows: RDD[IndexedRow]) = this(rows, 0L, 0)
 
+  /**
+   *
+   * @since 1.0.0
+   */
   override def numCols(): Long = {
     if (nCols <= 0) {
       // Calling `first` will throw an exception if `rows` is empty.
@@ -59,6 +67,10 @@ class IndexedRowMatrix(
     nCols
   }
 
+  /**
+   *
+   * @since 1.0.0
+   */
   override def numRows(): Long = {
     if (nRows <= 0L) {
       // Reduce will throw an exception if `rows` is empty.
@@ -70,12 +82,15 @@ class IndexedRowMatrix(
   /**
    * Drops row indices and converts this matrix to a
    * [[org.apache.spark.mllib.linalg.distributed.RowMatrix]].
+   * @since 1.0.0
    */
   def toRowMatrix(): RowMatrix = {
     new RowMatrix(rows.map(_.vector), 0L, nCols)
   }
 
-  /** Converts to BlockMatrix. Creates blocks of [[SparseMatrix]] with size 1024 x 1024.
*/
+  /** Converts to BlockMatrix. Creates blocks of [[SparseMatrix]] with size 1024 x 1024.
+    * @since 1.3.0
+    * */
   def toBlockMatrix(): BlockMatrix = {
     toBlockMatrix(1024, 1024)
   }
@@ -87,6 +102,7 @@ class IndexedRowMatrix(
    * @param colsPerBlock The number of columns of each block. The blocks at the right edge
may have
    *                     a smaller value. Must be an integer value greater than 0.
    * @return a [[BlockMatrix]]
+   * @since 1.3.0
    */
   def toBlockMatrix(rowsPerBlock: Int, colsPerBlock: Int): BlockMatrix = {
     // TODO: This implementation may be optimized
@@ -96,6 +112,7 @@ class IndexedRowMatrix(
   /**
    * Converts this matrix to a
    * [[org.apache.spark.mllib.linalg.distributed.CoordinateMatrix]].
+   * @since 1.3.0
    */
   def toCoordinateMatrix(): CoordinateMatrix = {
     val entries = rows.flatMap { row =>
@@ -132,6 +149,7 @@ class IndexedRowMatrix(
    * @param rCond the reciprocal condition number. All singular values smaller than rCond
* sigma(0)
    *              are treated as zero, where sigma(0) is the largest singular value.
    * @return SingularValueDecomposition(U, s, V)
+   * @since 1.0.0
    */
   def computeSVD(
       k: Int,
@@ -158,6 +176,7 @@ class IndexedRowMatrix(
    *
    * @param B a local matrix whose number of rows must match the number of columns of this
matrix
    * @return an IndexedRowMatrix representing the product, which preserves partitioning
+   * @since 1.0.0
    */
   def multiply(B: Matrix): IndexedRowMatrix = {
     val mat = toRowMatrix().multiply(B)
@@ -169,6 +188,7 @@ class IndexedRowMatrix(
 
   /**
    * Computes the Gramian matrix `A^T A`.
+   * @since 1.0.0
    */
   def computeGramianMatrix(): Matrix = {
     toRowMatrix().computeGramianMatrix()

http://git-wip-us.apache.org/repos/asf/spark/blob/088b11ec/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
index bfc90c9..b2e94f2 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/distributed/RowMatrix.scala
@@ -44,6 +44,7 @@ import org.apache.spark.storage.StorageLevel
  *              be determined by the number of records in the RDD `rows`.
  * @param nCols number of columns. A non-positive value means unknown, and then the number
of
  *              columns will be determined by the size of the first row.
+ * @since 1.0.0
  */
 @Experimental
 class RowMatrix(
@@ -51,10 +52,14 @@ class RowMatrix(
     private var nRows: Long,
     private var nCols: Int) extends DistributedMatrix with Logging {
 
-  /** Alternative constructor leaving matrix dimensions to be determined automatically. */
+  /** Alternative constructor leaving matrix dimensions to be determined automatically.
+    * @since 1.0.0
+    * */
   def this(rows: RDD[Vector]) = this(rows, 0L, 0)
 
-  /** Gets or computes the number of columns. */
+  /** Gets or computes the number of columns.
+    * @since 1.0.0
+    * */
   override def numCols(): Long = {
     if (nCols <= 0) {
       try {
@@ -69,7 +74,9 @@ class RowMatrix(
     nCols
   }
 
-  /** Gets or computes the number of rows. */
+  /** Gets or computes the number of rows.
+    * @since 1.0.0
+    * */
   override def numRows(): Long = {
     if (nRows <= 0L) {
       nRows = rows.count()
@@ -107,6 +114,7 @@ class RowMatrix(
 
   /**
    * Computes the Gramian matrix `A^T A`.
+   * @since 1.0.0
    */
   def computeGramianMatrix(): Matrix = {
     val n = numCols().toInt
@@ -177,6 +185,7 @@ class RowMatrix(
    * @param rCond the reciprocal condition number. All singular values smaller than rCond
* sigma(0)
    *              are treated as zero, where sigma(0) is the largest singular value.
    * @return SingularValueDecomposition(U, s, V). U = null if computeU = false.
+   * @since 1.0.0
    */
   def computeSVD(
       k: Int,
@@ -317,6 +326,7 @@ class RowMatrix(
   /**
    * Computes the covariance matrix, treating each row as an observation.
    * @return a local dense matrix of size n x n
+   * @since 1.0.0
    */
   def computeCovariance(): Matrix = {
     val n = numCols().toInt
@@ -370,6 +380,7 @@ class RowMatrix(
    *
    * @param k number of top principal components.
    * @return a matrix of size n-by-k, whose columns are principal components
+   * @since 1.0.0
    */
   def computePrincipalComponents(k: Int): Matrix = {
     val n = numCols().toInt
@@ -388,6 +399,7 @@ class RowMatrix(
 
   /**
    * Computes column-wise summary statistics.
+   * @since 1.0.0
    */
   def computeColumnSummaryStatistics(): MultivariateStatisticalSummary = {
     val summary = rows.treeAggregate(new MultivariateOnlineSummarizer)(
@@ -403,6 +415,7 @@ class RowMatrix(
    * @param B a local matrix whose number of rows must match the number of columns of this
matrix
    * @return a [[org.apache.spark.mllib.linalg.distributed.RowMatrix]] representing the product,
    *         which preserves partitioning
+   * @since 1.0.0
    */
   def multiply(B: Matrix): RowMatrix = {
     val n = numCols().toInt
@@ -435,6 +448,7 @@ class RowMatrix(
    *
    * @return An n x n sparse upper-triangular matrix of cosine similarities between
    *         columns of this matrix.
+   * @since 1.2.0
    */
   def columnSimilarities(): CoordinateMatrix = {
     columnSimilarities(0.0)
@@ -478,6 +492,7 @@ class RowMatrix(
    *                  with the cost vs estimate quality trade-off described above.
    * @return An n x n sparse upper-triangular matrix of cosine similarities
    *         between columns of this matrix.
+   * @since 1.2.0
    */
   def columnSimilarities(threshold: Double): CoordinateMatrix = {
     require(threshold >= 0, s"Threshold cannot be negative: $threshold")
@@ -656,6 +671,9 @@ class RowMatrix(
   }
 }
 
+/**
+ * @since 1.0.0
+ */
 @Experimental
 object RowMatrix {
 


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message