spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From l...@apache.org
Subject spark git commit: [SPARK-4176] [SQL] Supports decimal types with precision > 18 in Parquet
Date Mon, 27 Jul 2015 15:29:55 GMT
Repository: spark
Updated Branches:
  refs/heads/master 622838165 -> aa19c696e


[SPARK-4176] [SQL] Supports decimal types with precision > 18 in Parquet

This PR is based on #6796 authored by rtreffer.

To support large decimal precisions (> 18), we do the following things in this PR:

1. Making `CatalystSchemaConverter` support large decimal precision

   Decimal types with large precision are always converted to fixed-length byte array.

2. Making `CatalystRowConverter` support reading decimal values with large precision

   When the precision is > 18, constructs `Decimal` values with an unscaled `BigInteger`
rather than an unscaled `Long`.

3. Making `RowWriteSupport` support writing decimal values with large precision

   In this PR we always write decimals as fixed-length byte array, because Parquet write path
hasn't been refactored to conform Parquet format spec (see SPARK-6774 & SPARK-8848).

Two follow-up tasks should be done in future PRs:

- [ ] Writing decimals as `INT32`, `INT64` when possible while fixing SPARK-8848
- [ ] Adding compatibility tests as part of SPARK-5463

Author: Cheng Lian <lian@databricks.com>

Closes #7455 from liancheng/spark-4176 and squashes the following commits:

a543d10 [Cheng Lian] Fixes errors introduced while rebasing
9e31cdf [Cheng Lian] Supports decimals with precision > 18 for Parquet


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/aa19c696
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/aa19c696
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/aa19c696

Branch: refs/heads/master
Commit: aa19c696e25ebb07fd3df110cfcbcc69954ce335
Parents: 6228381
Author: Rene Treffer <treffer+github@measite.de>
Authored: Mon Jul 27 23:29:40 2015 +0800
Committer: Cheng Lian <lian@databricks.com>
Committed: Mon Jul 27 23:29:40 2015 +0800

----------------------------------------------------------------------
 .../sql/parquet/CatalystRowConverter.scala      | 25 +++++---
 .../sql/parquet/CatalystSchemaConverter.scala   | 46 +++++++-------
 .../spark/sql/parquet/ParquetTableSupport.scala | 64 +++++++++++++-------
 .../spark/sql/parquet/ParquetIOSuite.scala      | 10 +--
 4 files changed, 85 insertions(+), 60 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/aa19c696/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystRowConverter.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystRowConverter.scala
b/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystRowConverter.scala
index b5e4263..e00bd90 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystRowConverter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystRowConverter.scala
@@ -17,6 +17,7 @@
 
 package org.apache.spark.sql.parquet
 
+import java.math.{BigDecimal, BigInteger}
 import java.nio.ByteOrder
 
 import scala.collection.JavaConversions._
@@ -263,17 +264,23 @@ private[parquet] class CatalystRowConverter(
       val scale = decimalType.scale
       val bytes = value.getBytes
 
-      var unscaled = 0L
-      var i = 0
+      if (precision <= 8) {
+        // Constructs a `Decimal` with an unscaled `Long` value if possible.
+        var unscaled = 0L
+        var i = 0
 
-      while (i < bytes.length) {
-        unscaled = (unscaled << 8) | (bytes(i) & 0xff)
-        i += 1
-      }
+        while (i < bytes.length) {
+          unscaled = (unscaled << 8) | (bytes(i) & 0xff)
+          i += 1
+        }
 
-      val bits = 8 * bytes.length
-      unscaled = (unscaled << (64 - bits)) >> (64 - bits)
-      Decimal(unscaled, precision, scale)
+        val bits = 8 * bytes.length
+        unscaled = (unscaled << (64 - bits)) >> (64 - bits)
+        Decimal(unscaled, precision, scale)
+      } else {
+        // Otherwise, resorts to an unscaled `BigInteger` instead.
+        Decimal(new BigDecimal(new BigInteger(bytes), scale), precision, scale)
+      }
     }
   }
 

http://git-wip-us.apache.org/repos/asf/spark/blob/aa19c696/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystSchemaConverter.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystSchemaConverter.scala
b/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystSchemaConverter.scala
index e9ef01e..d43ca95 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystSchemaConverter.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/CatalystSchemaConverter.scala
@@ -387,24 +387,18 @@ private[parquet] class CatalystSchemaConverter(
       // =====================================
 
       // Spark 1.4.x and prior versions only support decimals with a maximum precision of
18 and
-      // always store decimals in fixed-length byte arrays.
-      case DecimalType.Fixed(precision, scale)
-        if precision <= maxPrecisionForBytes(8) && !followParquetFormatSpec =>
+      // always store decimals in fixed-length byte arrays.  To keep compatibility with these
older
+      // versions, here we convert decimals with all precisions to `FIXED_LEN_BYTE_ARRAY`
annotated
+      // by `DECIMAL`.
+      case DecimalType.Fixed(precision, scale) if !followParquetFormatSpec =>
         Types
           .primitive(FIXED_LEN_BYTE_ARRAY, repetition)
           .as(DECIMAL)
           .precision(precision)
           .scale(scale)
-          .length(minBytesForPrecision(precision))
+          .length(CatalystSchemaConverter.minBytesForPrecision(precision))
           .named(field.name)
 
-      case dec @ DecimalType() if !followParquetFormatSpec =>
-        throw new AnalysisException(
-          s"Data type $dec is not supported. " +
-            s"When ${SQLConf.PARQUET_FOLLOW_PARQUET_FORMAT_SPEC.key} is set to false," +
-            "decimal precision and scale must be specified, " +
-            "and precision must be less than or equal to 18.")
-
       // =====================================
       // Decimals (follow Parquet format spec)
       // =====================================
@@ -436,7 +430,7 @@ private[parquet] class CatalystSchemaConverter(
           .as(DECIMAL)
           .precision(precision)
           .scale(scale)
-          .length(minBytesForPrecision(precision))
+          .length(CatalystSchemaConverter.minBytesForPrecision(precision))
           .named(field.name)
 
       // ===================================================
@@ -548,15 +542,6 @@ private[parquet] class CatalystSchemaConverter(
         Math.pow(2, 8 * numBytes - 1) - 1)))  // max value stored in numBytes
       .asInstanceOf[Int]
   }
-
-  // Min byte counts needed to store decimals with various precisions
-  private val minBytesForPrecision: Array[Int] = Array.tabulate(38) { precision =>
-    var numBytes = 1
-    while (math.pow(2.0, 8 * numBytes - 1) < math.pow(10.0, precision)) {
-      numBytes += 1
-    }
-    numBytes
-  }
 }
 
 
@@ -580,4 +565,23 @@ private[parquet] object CatalystSchemaConverter {
       throw new AnalysisException(message)
     }
   }
+
+  private def computeMinBytesForPrecision(precision : Int) : Int = {
+    var numBytes = 1
+    while (math.pow(2.0, 8 * numBytes - 1) < math.pow(10.0, precision)) {
+      numBytes += 1
+    }
+    numBytes
+  }
+
+  private val MIN_BYTES_FOR_PRECISION = Array.tabulate[Int](39)(computeMinBytesForPrecision)
+
+  // Returns the minimum number of bytes needed to store a decimal with a given `precision`.
+  def minBytesForPrecision(precision : Int) : Int = {
+    if (precision < MIN_BYTES_FOR_PRECISION.length) {
+      MIN_BYTES_FOR_PRECISION(precision)
+    } else {
+      computeMinBytesForPrecision(precision)
+    }
+  }
 }

http://git-wip-us.apache.org/repos/asf/spark/blob/aa19c696/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala
b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala
index fc9f61a..78ecfad 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala
@@ -17,6 +17,7 @@
 
 package org.apache.spark.sql.parquet
 
+import java.math.BigInteger
 import java.nio.{ByteBuffer, ByteOrder}
 import java.util.{HashMap => JHashMap}
 
@@ -114,11 +115,8 @@ private[parquet] class RowWriteSupport extends WriteSupport[InternalRow]
with Lo
           Binary.fromByteArray(value.asInstanceOf[UTF8String].getBytes))
         case BinaryType => writer.addBinary(
           Binary.fromByteArray(value.asInstanceOf[Array[Byte]]))
-        case d: DecimalType =>
-          if (d.precision > 18) {
-            sys.error(s"Unsupported datatype $d, cannot write to consumer")
-          }
-          writeDecimal(value.asInstanceOf[Decimal], d.precision)
+        case DecimalType.Fixed(precision, _) =>
+          writeDecimal(value.asInstanceOf[Decimal], precision)
         case _ => sys.error(s"Do not know how to writer $schema to consumer")
       }
     }
@@ -199,20 +197,47 @@ private[parquet] class RowWriteSupport extends WriteSupport[InternalRow]
with Lo
     writer.endGroup()
   }
 
-  // Scratch array used to write decimals as fixed-length binary
-  private[this] val scratchBytes = new Array[Byte](8)
+  // Scratch array used to write decimals as fixed-length byte array
+  private[this] var reusableDecimalBytes = new Array[Byte](16)
 
   private[parquet] def writeDecimal(decimal: Decimal, precision: Int): Unit = {
-    val numBytes = ParquetTypesConverter.BYTES_FOR_PRECISION(precision)
-    val unscaledLong = decimal.toUnscaledLong
-    var i = 0
-    var shift = 8 * (numBytes - 1)
-    while (i < numBytes) {
-      scratchBytes(i) = (unscaledLong >> shift).toByte
-      i += 1
-      shift -= 8
+    val numBytes = CatalystSchemaConverter.minBytesForPrecision(precision)
+
+    def longToBinary(unscaled: Long): Binary = {
+      var i = 0
+      var shift = 8 * (numBytes - 1)
+      while (i < numBytes) {
+        reusableDecimalBytes(i) = (unscaled >> shift).toByte
+        i += 1
+        shift -= 8
+      }
+      Binary.fromByteArray(reusableDecimalBytes, 0, numBytes)
     }
-    writer.addBinary(Binary.fromByteArray(scratchBytes, 0, numBytes))
+
+    def bigIntegerToBinary(unscaled: BigInteger): Binary = {
+      unscaled.toByteArray match {
+        case bytes if bytes.length == numBytes =>
+          Binary.fromByteArray(bytes)
+
+        case bytes if bytes.length <= reusableDecimalBytes.length =>
+          val signedByte = (if (bytes.head < 0) -1 else 0).toByte
+          java.util.Arrays.fill(reusableDecimalBytes, 0, numBytes - bytes.length, signedByte)
+          System.arraycopy(bytes, 0, reusableDecimalBytes, numBytes - bytes.length, bytes.length)
+          Binary.fromByteArray(reusableDecimalBytes, 0, numBytes)
+
+        case bytes =>
+          reusableDecimalBytes = new Array[Byte](bytes.length)
+          bigIntegerToBinary(unscaled)
+      }
+    }
+
+    val binary = if (numBytes <= 8) {
+      longToBinary(decimal.toUnscaledLong)
+    } else {
+      bigIntegerToBinary(decimal.toJavaBigDecimal.unscaledValue())
+    }
+
+    writer.addBinary(binary)
   }
 
   // array used to write Timestamp as Int96 (fixed-length binary)
@@ -268,11 +293,8 @@ private[parquet] class MutableRowWriteSupport extends RowWriteSupport
{
         writer.addBinary(Binary.fromByteArray(record.getUTF8String(index).getBytes))
       case BinaryType =>
         writer.addBinary(Binary.fromByteArray(record.getBinary(index)))
-      case d: DecimalType =>
-        if (d.precision > 18) {
-          sys.error(s"Unsupported datatype $d, cannot write to consumer")
-        }
-        writeDecimal(record.getDecimal(index), d.precision)
+      case DecimalType.Fixed(precision, _) =>
+        writeDecimal(record.getDecimal(index), precision)
       case _ => sys.error(s"Unsupported datatype $ctype, cannot write to consumer")
     }
   }

http://git-wip-us.apache.org/repos/asf/spark/blob/aa19c696/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala
index b5314a3..b415da5 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetIOSuite.scala
@@ -106,21 +106,13 @@ class ParquetIOSuite extends QueryTest with ParquetTest {
         // Parquet doesn't allow column names with spaces, have to add an alias here
         .select($"_1" cast decimal as "dec")
 
-    for ((precision, scale) <- Seq((5, 2), (1, 0), (1, 1), (18, 10), (18, 17))) {
+    for ((precision, scale) <- Seq((5, 2), (1, 0), (1, 1), (18, 10), (18, 17), (19, 0),
(38, 37))) {
       withTempPath { dir =>
         val data = makeDecimalRDD(DecimalType(precision, scale))
         data.write.parquet(dir.getCanonicalPath)
         checkAnswer(sqlContext.read.parquet(dir.getCanonicalPath), data.collect().toSeq)
       }
     }
-
-    // Decimals with precision above 18 are not yet supported
-    intercept[Throwable] {
-      withTempPath { dir =>
-        makeDecimalRDD(DecimalType(19, 10)).write.parquet(dir.getCanonicalPath)
-        sqlContext.read.parquet(dir.getCanonicalPath).collect()
-      }
-    }
   }
 
   test("date type") {


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message