spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From dav...@apache.org
Subject spark git commit: [SPARK-7401] [MLLIB] [PYSPARK] Vectorize dot product and sq_dist between SparseVector and DenseVector
Date Fri, 03 Jul 2015 22:49:35 GMT
Repository: spark
Updated Branches:
  refs/heads/master ab535b9a1 -> f0fac2aa8


[SPARK-7401] [MLLIB] [PYSPARK] Vectorize dot product and sq_dist between SparseVector and
DenseVector

Currently we iterate over indices which can be vectorized.

Author: MechCoder <manojkumarsivaraj334@gmail.com>

Closes #5946 from MechCoder/spark-7203 and squashes the following commits:

034d086 [MechCoder] Vectorize dot calculation for numpy arrays for ndim=2
bce2b07 [MechCoder] fix doctest
fcad0a3 [MechCoder] Remove type checks for list, pyarray etc
0ee5dd4 [MechCoder] Add tests and other isinstance changes
e5f1de0 [MechCoder] [SPARK-7401] Vectorize dot product and sq_dist


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/f0fac2aa
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/f0fac2aa
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/f0fac2aa

Branch: refs/heads/master
Commit: f0fac2aa80da7c739b88043571e5d49ba40f9413
Parents: ab535b9
Author: MechCoder <manojkumarsivaraj334@gmail.com>
Authored: Fri Jul 3 15:49:32 2015 -0700
Committer: Davies Liu <davies.liu@gmail.com>
Committed: Fri Jul 3 15:49:32 2015 -0700

----------------------------------------------------------------------
 python/pyspark/mllib/linalg.py | 44 ++++++++++++++++++-------------------
 python/pyspark/mllib/tests.py  |  8 +++++++
 2 files changed, 29 insertions(+), 23 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/f0fac2aa/python/pyspark/mllib/linalg.py
----------------------------------------------------------------------
diff --git a/python/pyspark/mllib/linalg.py b/python/pyspark/mllib/linalg.py
index e96c5ef..9959a01 100644
--- a/python/pyspark/mllib/linalg.py
+++ b/python/pyspark/mllib/linalg.py
@@ -577,22 +577,19 @@ class SparseVector(Vector):
             ...
         AssertionError: dimension mismatch
         """
-        if type(other) == np.ndarray:
-            if other.ndim == 2:
-                results = [self.dot(other[:, i]) for i in xrange(other.shape[1])]
-                return np.array(results)
-            elif other.ndim > 2:
+
+        if isinstance(other, np.ndarray):
+            if other.ndim not in [2, 1]:
                 raise ValueError("Cannot call dot with %d-dimensional array" % other.ndim)
+            assert len(self) == other.shape[0], "dimension mismatch"
+            return np.dot(self.values, other[self.indices])
 
         assert len(self) == _vector_size(other), "dimension mismatch"
 
-        if type(other) in (np.ndarray, array.array, DenseVector):
-            result = 0.0
-            for i in xrange(len(self.indices)):
-                result += self.values[i] * other[self.indices[i]]
-            return result
+        if isinstance(other, DenseVector):
+            return np.dot(other.array[self.indices], self.values)
 
-        elif type(other) is SparseVector:
+        elif isinstance(other, SparseVector):
             result = 0.0
             i, j = 0, 0
             while i < len(self.indices) and j < len(other.indices):
@@ -635,22 +632,23 @@ class SparseVector(Vector):
         AssertionError: dimension mismatch
         """
         assert len(self) == _vector_size(other), "dimension mismatch"
-        if type(other) in (list, array.array, DenseVector, np.array, np.ndarray):
-            if type(other) is np.array and other.ndim != 1:
+
+        if isinstance(other, np.ndarray) or isinstance(other, DenseVector):
+            if isinstance(other, np.ndarray) and other.ndim != 1:
                 raise Exception("Cannot call squared_distance with %d-dimensional array"
%
                                 other.ndim)
-            result = 0.0
-            j = 0   # index into our own array
-            for i in xrange(len(other)):
-                if j < len(self.indices) and self.indices[j] == i:
-                    diff = self.values[j] - other[i]
-                    result += diff * diff
-                    j += 1
-                else:
-                    result += other[i] * other[i]
+            if isinstance(other, DenseVector):
+                other = other.array
+            sparse_ind = np.zeros(other.size, dtype=bool)
+            sparse_ind[self.indices] = True
+            dist = other[sparse_ind] - self.values
+            result = np.dot(dist, dist)
+
+            other_ind = other[~sparse_ind]
+            result += np.dot(other_ind, other_ind)
             return result
 
-        elif type(other) is SparseVector:
+        elif isinstance(other, SparseVector):
             result = 0.0
             i, j = 0, 0
             while i < len(self.indices) and j < len(other.indices):

http://git-wip-us.apache.org/repos/asf/spark/blob/f0fac2aa/python/pyspark/mllib/tests.py
----------------------------------------------------------------------
diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py
index 49ce125..d9f9874 100644
--- a/python/pyspark/mllib/tests.py
+++ b/python/pyspark/mllib/tests.py
@@ -129,17 +129,22 @@ class VectorTests(MLlibTestCase):
                      [1., 2., 3., 4.],
                      [1., 2., 3., 4.],
                      [1., 2., 3., 4.]])
+        arr = pyarray.array('d', [0, 1, 2, 3])
         self.assertEquals(10.0, sv.dot(dv))
         self.assertTrue(array_equal(array([3., 6., 9., 12.]), sv.dot(mat)))
         self.assertEquals(30.0, dv.dot(dv))
         self.assertTrue(array_equal(array([10., 20., 30., 40.]), dv.dot(mat)))
         self.assertEquals(30.0, lst.dot(dv))
         self.assertTrue(array_equal(array([10., 20., 30., 40.]), lst.dot(mat)))
+        self.assertEquals(7.0, sv.dot(arr))
 
     def test_squared_distance(self):
         sv = SparseVector(4, {1: 1, 3: 2})
         dv = DenseVector(array([1., 2., 3., 4.]))
         lst = DenseVector([4, 3, 2, 1])
+        lst1 = [4, 3, 2, 1]
+        arr = pyarray.array('d', [0, 2, 1, 3])
+        narr = array([0, 2, 1, 3])
         self.assertEquals(15.0, _squared_distance(sv, dv))
         self.assertEquals(25.0, _squared_distance(sv, lst))
         self.assertEquals(20.0, _squared_distance(dv, lst))
@@ -149,6 +154,9 @@ class VectorTests(MLlibTestCase):
         self.assertEquals(0.0, _squared_distance(sv, sv))
         self.assertEquals(0.0, _squared_distance(dv, dv))
         self.assertEquals(0.0, _squared_distance(lst, lst))
+        self.assertEquals(25.0, _squared_distance(sv, lst1))
+        self.assertEquals(3.0, _squared_distance(sv, arr))
+        self.assertEquals(3.0, _squared_distance(sv, narr))
 
     def test_conversion(self):
         # numpy arrays should be automatically upcast to float64


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message