spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From yh...@apache.org
Subject spark git commit: [SPARK-5938] [SPARK-5443] [SQL] Improve JsonRDD performance
Date Thu, 07 May 2015 05:57:01 GMT
Repository: spark
Updated Branches:
  refs/heads/master 9cfa9a516 -> 2d6612cc8


[SPARK-5938] [SPARK-5443] [SQL] Improve JsonRDD performance

This patch comprises of a few related pieces of work:

* Schema inference is performed directly on the JSON token stream
* `String => Row` conversion populate Spark SQL structures without intermediate types
* Projection pushdown is implemented via CatalystScan for DataFrame queries
* Support for the legacy parser by setting `spark.sql.json.useJacksonStreamingAPI` to `false`

Performance improvements depend on the schema and queries being executed, but it should be faster across the board. Below are benchmarks using the last.fm Million Song dataset:

```
Command                                            | Baseline | Patched
---------------------------------------------------|----------|--------
import sqlContext.implicits._                      |          |
val df = sqlContext.jsonFile("/tmp/lastfm.json")   |    70.0s |   14.6s
df.count()                                         |    28.8s |    6.2s
df.rdd.count()                                     |    35.3s |   21.5s
df.where($"artist" === "Robert Hood").collect()    |    28.3s |   16.9s
```

To prepare this dataset for benchmarking, follow these steps:

```
# Fetch the datasets from http://labrosa.ee.columbia.edu/millionsong/lastfm
wget http://labrosa.ee.columbia.edu/millionsong/sites/default/files/lastfm/lastfm_test.zip \
     http://labrosa.ee.columbia.edu/millionsong/sites/default/files/lastfm/lastfm_train.zip

# Decompress and combine, pipe through `jq -c` to ensure there is one record per line
unzip -p lastfm_test.zip lastfm_train.zip  | jq -c . > lastfm.json
```

Author: Nathan Howell <nhowell@godaddy.com>

Closes #5801 from NathanHowell/json-performance and squashes the following commits:

26fea31 [Nathan Howell] Recreate the baseRDD each for each scan operation
a7ebeb2 [Nathan Howell] Increase coverage of inserts into a JSONRelation
e06a1dd [Nathan Howell] Add comments to the `useJacksonStreamingAPI` config flag
6822712 [Nathan Howell] Split up JsonRDD2 into multiple objects
fa8234f [Nathan Howell] Wrap long lines
b31917b [Nathan Howell] Rename `useJsonRDD2` to `useJacksonStreamingAPI`
15c5d1b [Nathan Howell] JSONRelation's baseRDD need not be lazy
f8add6e [Nathan Howell] Add comments on lack of support for precision and scale DecimalTypes
fa0be47 [Nathan Howell] Remove unused default case in the field parser
80dba17 [Nathan Howell] Add comments regarding null handling and empty strings
842846d [Nathan Howell] Point the empty schema inference test at JsonRDD2
ab6ee87 [Nathan Howell] Add projection pushdown support to JsonRDD/JsonRDD2
f636c14 [Nathan Howell] Enable JsonRDD2 by default, add a flag to switch back to JsonRDD
0bbc445 [Nathan Howell] Improve JSON parsing and type inference performance
7ca70c1 [Nathan Howell] Eliminate arrow pattern, replace with pattern matches


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/2d6612cc
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/2d6612cc
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/2d6612cc

Branch: refs/heads/master
Commit: 2d6612cc8b98f767d73c4d15e4065bf3d6c12ea7
Parents: 9cfa9a5
Author: Nathan Howell <nhowell@godaddy.com>
Authored: Wed May 6 22:56:53 2015 -0700
Committer: Yin Huai <yhuai@databricks.com>
Committed: Wed May 6 22:56:53 2015 -0700

----------------------------------------------------------------------
 .../catalyst/analysis/HiveTypeCoercion.scala    |  43 ++--
 .../org/apache/spark/sql/types/StructType.scala |   4 +
 .../scala/org/apache/spark/sql/DataFrame.scala  |   4 +-
 .../scala/org/apache/spark/sql/SQLConf.scala    |   8 +
 .../scala/org/apache/spark/sql/SQLContext.scala |  34 +--
 .../org/apache/spark/sql/json/InferSchema.scala | 171 +++++++++++++++
 .../apache/spark/sql/json/JSONRelation.scala    |  99 +++++++--
 .../spark/sql/json/JacksonGenerator.scala       |  77 +++++++
 .../apache/spark/sql/json/JacksonParser.scala   | 215 +++++++++++++++++++
 .../apache/spark/sql/json/JacksonUtils.scala    |  32 +++
 .../org/apache/spark/sql/json/JsonRDD.scala     |  50 -----
 .../org/apache/spark/sql/json/JsonSuite.scala   |  51 +++--
 .../apache/spark/sql/sources/InsertSuite.scala  |  55 ++++-
 13 files changed, 715 insertions(+), 128 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala
----------------------------------------------------------------------
diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala
index 96e2aee..873c75c 100644
--- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala
+++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/HiveTypeCoercion.scala
@@ -26,7 +26,14 @@ object HiveTypeCoercion {
   // See https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types.
   // The conversion for integral and floating point types have a linear widening hierarchy:
   private val numericPrecedence =
-    Seq(ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType, DecimalType.Unlimited)
+    IndexedSeq(
+      ByteType,
+      ShortType,
+      IntegerType,
+      LongType,
+      FloatType,
+      DoubleType,
+      DecimalType.Unlimited)
 
   /**
    * Find the tightest common type of two types that might be used in a binary expression.
@@ -34,25 +41,21 @@ object HiveTypeCoercion {
    * with primitive types, because in that case the precision and scale of the result depends on
    * the operation. Those rules are implemented in [[HiveTypeCoercion.DecimalPrecision]].
    */
-  def findTightestCommonType(t1: DataType, t2: DataType): Option[DataType] = {
-    val valueTypes = Seq(t1, t2).filter(t => t != NullType)
-    if (valueTypes.distinct.size > 1) {
-      // Promote numeric types to the highest of the two and all numeric types to unlimited decimal
-      if (numericPrecedence.contains(t1) && numericPrecedence.contains(t2)) {
-        Some(numericPrecedence.filter(t => t == t1 || t == t2).last)
-      } else if (t1.isInstanceOf[DecimalType] && t2.isInstanceOf[DecimalType]) {
-        // Fixed-precision decimals can up-cast into unlimited
-        if (t1 == DecimalType.Unlimited || t2 == DecimalType.Unlimited) {
-          Some(DecimalType.Unlimited)
-        } else {
-          None
-        }
-      } else {
-        None
-      }
-    } else {
-      Some(if (valueTypes.size == 0) NullType else valueTypes.head)
-    }
+  val findTightestCommonType: (DataType, DataType) => Option[DataType] = {
+    case (t1, t2) if t1 == t2 => Some(t1)
+    case (NullType, t1) => Some(t1)
+    case (t1, NullType) => Some(t1)
+
+    // Promote numeric types to the highest of the two and all numeric types to unlimited decimal
+    case (t1, t2) if Seq(t1, t2).forall(numericPrecedence.contains) =>
+      val index = numericPrecedence.lastIndexWhere(t => t == t1 || t == t2)
+      Some(numericPrecedence(index))
+
+    // Fixed-precision decimals can up-cast into unlimited
+    case (DecimalType.Unlimited, _: DecimalType) => Some(DecimalType.Unlimited)
+    case (_: DecimalType, DecimalType.Unlimited) => Some(DecimalType.Unlimited)
+
+    case _ => None
   }
 }
 

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StructType.scala
----------------------------------------------------------------------
diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StructType.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StructType.scala
index d80ffca..7e00a27 100644
--- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StructType.scala
+++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/StructType.scala
@@ -134,6 +134,10 @@ case class StructType(fields: Array[StructField]) extends DataType with Seq[Stru
       throw new IllegalArgumentException(s"""Field "$name" does not exist."""))
   }
 
+  private[sql] def getFieldIndex(name: String): Option[Int] = {
+    nameToIndex.get(name)
+  }
+
   protected[sql] def toAttributes: Seq[AttributeReference] =
     map(f => AttributeReference(f.name, f.dataType, f.nullable, f.metadata)())
 

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala
index 9d2cd7a..79fbf50 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala
@@ -42,7 +42,7 @@ import org.apache.spark.sql.catalyst.plans.{JoinType, Inner}
 import org.apache.spark.sql.catalyst.plans.logical._
 import org.apache.spark.sql.execution.{EvaluatePython, ExplainCommand, LogicalRDD}
 import org.apache.spark.sql.jdbc.JDBCWriteDetails
-import org.apache.spark.sql.json.JsonRDD
+import org.apache.spark.sql.json.{JacksonGenerator, JsonRDD}
 import org.apache.spark.sql.types._
 import org.apache.spark.sql.sources.{ResolvedDataSource, CreateTableUsingAsSelect}
 import org.apache.spark.util.Utils
@@ -1415,7 +1415,7 @@ class DataFrame private[sql](
       new Iterator[String] {
         override def hasNext: Boolean = iter.hasNext
         override def next(): String = {
-          JsonRDD.rowToJSON(rowSchema, gen)(iter.next())
+          JacksonGenerator(rowSchema, gen)(iter.next())
           gen.flush()
 
           val json = writer.toString

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala
index 3ffc209..bfaddd0 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala
@@ -73,6 +73,8 @@ private[spark] object SQLConf {
 
   val USE_SQL_SERIALIZER2 = "spark.sql.useSerializer2"
 
+  val USE_JACKSON_STREAMING_API = "spark.sql.json.useJacksonStreamingAPI"
+
   object Deprecated {
     val MAPRED_REDUCE_TASKS = "mapred.reduce.tasks"
   }
@@ -167,6 +169,12 @@ private[sql] class SQLConf extends Serializable {
   private[spark] def useSqlSerializer2: Boolean = getConf(USE_SQL_SERIALIZER2, "true").toBoolean
 
   /**
+   * Selects between the new (true) and old (false) JSON handlers, to be removed in Spark 1.5.0
+   */
+  private[spark] def useJacksonStreamingAPI: Boolean =
+    getConf(USE_JACKSON_STREAMING_API, "true").toBoolean
+
+  /**
    * Upper bound on the sizes (in bytes) of the tables qualified for the auto conversion to
    * a broadcast value during the physical executions of join operations.  Setting this to -1
    * effectively disables auto conversion.

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
index 7eabb93..0563430 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
@@ -659,13 +659,17 @@ class SQLContext(@transient val sparkContext: SparkContext)
    */
   @Experimental
   def jsonRDD(json: RDD[String], schema: StructType): DataFrame = {
-    val columnNameOfCorruptJsonRecord = conf.columnNameOfCorruptRecord
-    val appliedSchema =
-      Option(schema).getOrElse(
-        JsonRDD.nullTypeToStringType(
-          JsonRDD.inferSchema(json, 1.0, columnNameOfCorruptJsonRecord)))
-    val rowRDD = JsonRDD.jsonStringToRow(json, appliedSchema, columnNameOfCorruptJsonRecord)
-    createDataFrame(rowRDD, appliedSchema, needsConversion = false)
+    if (conf.useJacksonStreamingAPI) {
+      baseRelationToDataFrame(new JSONRelation(() => json, None, 1.0, Some(schema))(this))
+    } else {
+      val columnNameOfCorruptJsonRecord = conf.columnNameOfCorruptRecord
+      val appliedSchema =
+        Option(schema).getOrElse(
+          JsonRDD.nullTypeToStringType(
+            JsonRDD.inferSchema(json, 1.0, columnNameOfCorruptJsonRecord)))
+      val rowRDD = JsonRDD.jsonStringToRow(json, appliedSchema, columnNameOfCorruptJsonRecord)
+      createDataFrame(rowRDD, appliedSchema, needsConversion = false)
+    }
   }
 
   /**
@@ -689,12 +693,16 @@ class SQLContext(@transient val sparkContext: SparkContext)
    */
   @Experimental
   def jsonRDD(json: RDD[String], samplingRatio: Double): DataFrame = {
-    val columnNameOfCorruptJsonRecord = conf.columnNameOfCorruptRecord
-    val appliedSchema =
-      JsonRDD.nullTypeToStringType(
-        JsonRDD.inferSchema(json, samplingRatio, columnNameOfCorruptJsonRecord))
-    val rowRDD = JsonRDD.jsonStringToRow(json, appliedSchema, columnNameOfCorruptJsonRecord)
-    createDataFrame(rowRDD, appliedSchema, needsConversion = false)
+    if (conf.useJacksonStreamingAPI) {
+      baseRelationToDataFrame(new JSONRelation(() => json, None, samplingRatio, None)(this))
+    } else {
+      val columnNameOfCorruptJsonRecord = conf.columnNameOfCorruptRecord
+      val appliedSchema =
+        JsonRDD.nullTypeToStringType(
+          JsonRDD.inferSchema(json, samplingRatio, columnNameOfCorruptJsonRecord))
+      val rowRDD = JsonRDD.jsonStringToRow(json, appliedSchema, columnNameOfCorruptJsonRecord)
+      createDataFrame(rowRDD, appliedSchema, needsConversion = false)
+    }
   }
 
   /**

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/json/InferSchema.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/InferSchema.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/InferSchema.scala
new file mode 100644
index 0000000..9c58b8e
--- /dev/null
+++ b/sql/core/src/main/scala/org/apache/spark/sql/json/InferSchema.scala
@@ -0,0 +1,171 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.json
+
+import com.fasterxml.jackson.core._
+
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion
+import org.apache.spark.sql.json.JacksonUtils.nextUntil
+import org.apache.spark.sql.types._
+
+private[sql] object InferSchema {
+  /**
+   * Infer the type of a collection of json records in three stages:
+   *   1. Infer the type of each record
+   *   2. Merge types by choosing the lowest type necessary to cover equal keys
+   *   3. Replace any remaining null fields with string, the top type
+   */
+  def apply(
+      json: RDD[String],
+      samplingRatio: Double = 1.0,
+      columnNameOfCorruptRecords: String): StructType = {
+    require(samplingRatio > 0, s"samplingRatio ($samplingRatio) should be greater than 0")
+    val schemaData = if (samplingRatio > 0.99) {
+      json
+    } else {
+      json.sample(withReplacement = false, samplingRatio, 1)
+    }
+
+    // perform schema inference on each row and merge afterwards
+    schemaData.mapPartitions { iter =>
+      val factory = new JsonFactory()
+      iter.map { row =>
+        try {
+          val parser = factory.createParser(row)
+          parser.nextToken()
+          inferField(parser)
+        } catch {
+          case _: JsonParseException =>
+            StructType(Seq(StructField(columnNameOfCorruptRecords, StringType)))
+        }
+      }
+    }.treeAggregate[DataType](StructType(Seq()))(compatibleRootType, compatibleRootType) match {
+      case st: StructType => nullTypeToStringType(st)
+    }
+  }
+
+  /**
+   * Infer the type of a json document from the parser's token stream
+   */
+  private def inferField(parser: JsonParser): DataType = {
+    import com.fasterxml.jackson.core.JsonToken._
+    parser.getCurrentToken match {
+      case null | VALUE_NULL => NullType
+
+      case FIELD_NAME =>
+        parser.nextToken()
+        inferField(parser)
+
+      case VALUE_STRING if parser.getTextLength < 1 =>
+        // Zero length strings and nulls have special handling to deal
+        // with JSON generators that do not distinguish between the two.
+        // To accurately infer types for empty strings that are really
+        // meant to represent nulls we assume that the two are isomorphic
+        // but will defer treating null fields as strings until all the
+        // record fields' types have been combined.
+        NullType
+
+      case VALUE_STRING => StringType
+      case START_OBJECT =>
+        val builder = Seq.newBuilder[StructField]
+        while (nextUntil(parser, END_OBJECT)) {
+          builder += StructField(parser.getCurrentName, inferField(parser), nullable = true)
+        }
+
+        StructType(builder.result().sortBy(_.name))
+
+      case START_ARRAY =>
+        // If this JSON array is empty, we use NullType as a placeholder.
+        // If this array is not empty in other JSON objects, we can resolve
+        // the type as we pass through all JSON objects.
+        var elementType: DataType = NullType
+        while (nextUntil(parser, END_ARRAY)) {
+          elementType = compatibleType(elementType, inferField(parser))
+        }
+
+        ArrayType(elementType)
+
+      case VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT =>
+        import JsonParser.NumberType._
+        parser.getNumberType match {
+          // For Integer values, use LongType by default.
+          case INT | LONG => LongType
+          // Since we do not have a data type backed by BigInteger,
+          // when we see a Java BigInteger, we use DecimalType.
+          case BIG_INTEGER | BIG_DECIMAL => DecimalType.Unlimited
+          case FLOAT | DOUBLE => DoubleType
+        }
+
+      case VALUE_TRUE | VALUE_FALSE => BooleanType
+    }
+  }
+
+  private def nullTypeToStringType(struct: StructType): StructType = {
+    val fields = struct.fields.map {
+      case StructField(fieldName, dataType, nullable, _) =>
+        val newType = dataType match {
+          case NullType => StringType
+          case ArrayType(NullType, containsNull) => ArrayType(StringType, containsNull)
+          case ArrayType(struct: StructType, containsNull) =>
+            ArrayType(nullTypeToStringType(struct), containsNull)
+          case struct: StructType =>nullTypeToStringType(struct)
+          case other: DataType => other
+        }
+
+        StructField(fieldName, newType, nullable)
+    }
+
+    StructType(fields)
+  }
+
+  /**
+   * Remove top-level ArrayType wrappers and merge the remaining schemas
+   */
+  private def compatibleRootType: (DataType, DataType) => DataType = {
+    case (ArrayType(ty1, _), ty2) => compatibleRootType(ty1, ty2)
+    case (ty1, ArrayType(ty2, _)) => compatibleRootType(ty1, ty2)
+    case (ty1, ty2) => compatibleType(ty1, ty2)
+  }
+
+  /**
+   * Returns the most general data type for two given data types.
+   */
+  private[json] def compatibleType(t1: DataType, t2: DataType): DataType = {
+    HiveTypeCoercion.findTightestCommonType(t1, t2).getOrElse {
+      // t1 or t2 is a StructType, ArrayType, or an unexpected type.
+      (t1, t2) match {
+        case (other: DataType, NullType) => other
+        case (NullType, other: DataType) => other
+        case (StructType(fields1), StructType(fields2)) =>
+          val newFields = (fields1 ++ fields2).groupBy(field => field.name).map {
+            case (name, fieldTypes) =>
+              val dataType = fieldTypes.view.map(_.dataType).reduce(compatibleType)
+              StructField(name, dataType, nullable = true)
+          }
+          StructType(newFields.toSeq.sortBy(_.name))
+
+        case (ArrayType(elementType1, containsNull1), ArrayType(elementType2, containsNull2)) =>
+          ArrayType(compatibleType(elementType1, elementType2), containsNull1 || containsNull2)
+
+        // strings and every string is a Json object.
+        case (_, _) => StringType
+      }
+    }
+  }
+}

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala
index e3352d0..c772cd1 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala
@@ -22,14 +22,16 @@ import java.io.IOException
 import org.apache.hadoop.fs.Path
 
 import org.apache.spark.rdd.RDD
-import org.apache.spark.sql.catalyst.expressions.Row
+import org.apache.spark.sql.catalyst.expressions.{Expression, Attribute, Row}
 import org.apache.spark.sql.sources._
-import org.apache.spark.sql.types.StructType
+import org.apache.spark.sql.types.{StructField, StructType}
 import org.apache.spark.sql.{DataFrame, SQLContext, SaveMode}
 
 
 private[sql] class DefaultSource
-  extends RelationProvider with SchemaRelationProvider with CreatableRelationProvider {
+  extends RelationProvider
+  with SchemaRelationProvider
+  with CreatableRelationProvider {
 
   private def checkPath(parameters: Map[String, String]): String = {
     parameters.getOrElse("path", sys.error("'path' must be specified for json data."))
@@ -42,7 +44,7 @@ private[sql] class DefaultSource
     val path = checkPath(parameters)
     val samplingRatio = parameters.get("samplingRatio").map(_.toDouble).getOrElse(1.0)
 
-    JSONRelation(path, samplingRatio, None)(sqlContext)
+    new JSONRelation(path, samplingRatio, None, sqlContext)
   }
 
   /** Returns a new base relation with the given schema and parameters. */
@@ -53,7 +55,7 @@ private[sql] class DefaultSource
     val path = checkPath(parameters)
     val samplingRatio = parameters.get("samplingRatio").map(_.toDouble).getOrElse(1.0)
 
-    JSONRelation(path, samplingRatio, Some(schema))(sqlContext)
+    new JSONRelation(path, samplingRatio, Some(schema), sqlContext)
   }
 
   override def createRelation(
@@ -101,32 +103,87 @@ private[sql] class DefaultSource
   }
 }
 
-private[sql] case class JSONRelation(
-    path: String,
-    samplingRatio: Double,
+private[sql] class JSONRelation(
+    // baseRDD is not immutable with respect to INSERT OVERWRITE
+    // and so it must be recreated at least as often as the
+    // underlying inputs are modified. To be safe, a function is
+    // used instead of a regular RDD value to ensure a fresh RDD is
+    // recreated for each and every operation.
+    baseRDD: () => RDD[String],
+    val path: Option[String],
+    val samplingRatio: Double,
     userSpecifiedSchema: Option[StructType])(
     @transient val sqlContext: SQLContext)
   extends BaseRelation
   with TableScan
-  with InsertableRelation {
-
-  // TODO: Support partitioned JSON relation.
-  private def baseRDD = sqlContext.sparkContext.textFile(path)
+  with InsertableRelation
+  with CatalystScan {
+
+  def this(
+      path: String,
+      samplingRatio: Double,
+      userSpecifiedSchema: Option[StructType],
+      sqlContext: SQLContext) =
+    this(
+      () => sqlContext.sparkContext.textFile(path),
+      Some(path),
+      samplingRatio,
+      userSpecifiedSchema)(sqlContext)
+
+  private val useJacksonStreamingAPI: Boolean = sqlContext.conf.useJacksonStreamingAPI
 
   override val needConversion: Boolean = false
 
-  override val schema = userSpecifiedSchema.getOrElse(
-    JsonRDD.nullTypeToStringType(
-      JsonRDD.inferSchema(
-        baseRDD,
+  override lazy val schema = userSpecifiedSchema.getOrElse {
+    if (useJacksonStreamingAPI) {
+      InferSchema(
+        baseRDD(),
         samplingRatio,
-        sqlContext.conf.columnNameOfCorruptRecord)))
+        sqlContext.conf.columnNameOfCorruptRecord)
+    } else {
+      JsonRDD.nullTypeToStringType(
+        JsonRDD.inferSchema(
+          baseRDD(),
+          samplingRatio,
+          sqlContext.conf.columnNameOfCorruptRecord))
+    }
+  }
 
-  override def buildScan(): RDD[Row] =
-    JsonRDD.jsonStringToRow(baseRDD, schema, sqlContext.conf.columnNameOfCorruptRecord)
+  override def buildScan(): RDD[Row] = {
+    if (useJacksonStreamingAPI) {
+      JacksonParser(
+        baseRDD(),
+        schema,
+        sqlContext.conf.columnNameOfCorruptRecord)
+    } else {
+      JsonRDD.jsonStringToRow(
+        baseRDD(),
+        schema,
+        sqlContext.conf.columnNameOfCorruptRecord)
+    }
+  }
+
+  override def buildScan(requiredColumns: Seq[Attribute], filters: Seq[Expression]): RDD[Row] = {
+    if (useJacksonStreamingAPI) {
+      JacksonParser(
+        baseRDD(),
+        StructType.fromAttributes(requiredColumns),
+        sqlContext.conf.columnNameOfCorruptRecord)
+    } else {
+      JsonRDD.jsonStringToRow(
+        baseRDD(),
+        StructType.fromAttributes(requiredColumns),
+        sqlContext.conf.columnNameOfCorruptRecord)
+    }
+  }
 
   override def insert(data: DataFrame, overwrite: Boolean): Unit = {
-    val filesystemPath = new Path(path)
+    val filesystemPath = path match {
+      case Some(p) => new Path(p)
+      case None =>
+        throw new IOException(s"Cannot INSERT into table with no path defined")
+    }
+
     val fs = filesystemPath.getFileSystem(sqlContext.sparkContext.hadoopConfiguration)
 
     if (overwrite) {
@@ -147,7 +204,7 @@ private[sql] case class JSONRelation(
         }
       }
       // Write the data.
-      data.toJSON.saveAsTextFile(path)
+      data.toJSON.saveAsTextFile(filesystemPath.toString)
       // Right now, we assume that the schema is not changed. We will not update the schema.
       // schema = data.schema
     } else {

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonGenerator.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonGenerator.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonGenerator.scala
new file mode 100644
index 0000000..80bf74a
--- /dev/null
+++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonGenerator.scala
@@ -0,0 +1,77 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.json
+
+import scala.collection.Map
+
+import com.fasterxml.jackson.core._
+
+import org.apache.spark.sql.catalyst.expressions._
+import org.apache.spark.sql.types._
+
+private[sql] object JacksonGenerator {
+  /** Transforms a single Row to JSON using Jackson
+    *
+    * @param rowSchema the schema object used for conversion
+    * @param gen a JsonGenerator object
+    * @param row The row to convert
+    */
+  def apply(rowSchema: StructType, gen: JsonGenerator)(row: Row): Unit = {
+    def valWriter: (DataType, Any) => Unit = {
+      case (_, null) | (NullType, _)  => gen.writeNull()
+      case (StringType, v: String) => gen.writeString(v)
+      case (TimestampType, v: java.sql.Timestamp) => gen.writeString(v.toString)
+      case (IntegerType, v: Int) => gen.writeNumber(v)
+      case (ShortType, v: Short) => gen.writeNumber(v)
+      case (FloatType, v: Float) => gen.writeNumber(v)
+      case (DoubleType, v: Double) => gen.writeNumber(v)
+      case (LongType, v: Long) => gen.writeNumber(v)
+      case (DecimalType(), v: java.math.BigDecimal) => gen.writeNumber(v)
+      case (ByteType, v: Byte) => gen.writeNumber(v.toInt)
+      case (BinaryType, v: Array[Byte]) => gen.writeBinary(v)
+      case (BooleanType, v: Boolean) => gen.writeBoolean(v)
+      case (DateType, v) => gen.writeString(v.toString)
+      case (udt: UserDefinedType[_], v) => valWriter(udt.sqlType, udt.serialize(v))
+
+      case (ArrayType(ty, _), v: Seq[_] ) =>
+        gen.writeStartArray()
+        v.foreach(valWriter(ty,_))
+        gen.writeEndArray()
+
+      case (MapType(kv,vv, _), v: Map[_,_]) =>
+        gen.writeStartObject()
+        v.foreach { p =>
+          gen.writeFieldName(p._1.toString)
+          valWriter(vv,p._2)
+        }
+        gen.writeEndObject()
+
+      case (StructType(ty), v: Row) =>
+        gen.writeStartObject()
+        ty.zip(v.toSeq).foreach {
+          case (_, null) =>
+          case (field, v) =>
+            gen.writeFieldName(field.name)
+            valWriter(field.dataType, v)
+        }
+        gen.writeEndObject()
+    }
+
+    valWriter(rowSchema, row)
+  }
+}

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonParser.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonParser.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonParser.scala
new file mode 100644
index 0000000..a8e69ae
--- /dev/null
+++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonParser.scala
@@ -0,0 +1,215 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.json
+
+import java.io.ByteArrayOutputStream
+import java.sql.Timestamp
+
+import scala.collection.Map
+
+import com.fasterxml.jackson.core._
+
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.catalyst.expressions._
+import org.apache.spark.sql.json.JacksonUtils.nextUntil
+import org.apache.spark.sql.types._
+
+private[sql] object JacksonParser {
+  def apply(
+      json: RDD[String],
+      schema: StructType,
+      columnNameOfCorruptRecords: String): RDD[Row] = {
+    parseJson(json, schema, columnNameOfCorruptRecords)
+  }
+
+  /**
+   * Parse the current token (and related children) according to a desired schema
+   */
+  private[sql] def convertField(
+      factory: JsonFactory,
+      parser: JsonParser,
+      schema: DataType): Any = {
+    import com.fasterxml.jackson.core.JsonToken._
+    (parser.getCurrentToken, schema) match {
+      case (null | VALUE_NULL, _) =>
+        null
+
+      case (FIELD_NAME, _) =>
+        parser.nextToken()
+        convertField(factory, parser, schema)
+
+      case (VALUE_STRING, StringType) =>
+        UTF8String(parser.getText)
+
+      case (VALUE_STRING, _) if parser.getTextLength < 1 =>
+        // guard the non string type
+        null
+
+      case (VALUE_STRING, DateType) =>
+        DateUtils.millisToDays(DateUtils.stringToTime(parser.getText).getTime)
+
+      case (VALUE_STRING, TimestampType) =>
+        new Timestamp(DateUtils.stringToTime(parser.getText).getTime)
+
+      case (VALUE_NUMBER_INT, TimestampType) =>
+        new Timestamp(parser.getLongValue)
+
+      case (_, StringType) =>
+        val writer = new ByteArrayOutputStream()
+        val generator = factory.createGenerator(writer, JsonEncoding.UTF8)
+        generator.copyCurrentStructure(parser)
+        generator.close()
+        UTF8String(writer.toByteArray)
+
+      case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, FloatType) =>
+        parser.getFloatValue
+
+      case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, DoubleType) =>
+        parser.getDoubleValue
+
+      case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, DecimalType()) =>
+        // TODO: add fixed precision and scale handling
+        Decimal(parser.getDecimalValue)
+
+      case (VALUE_NUMBER_INT, ByteType) =>
+        parser.getByteValue
+
+      case (VALUE_NUMBER_INT, ShortType) =>
+        parser.getShortValue
+
+      case (VALUE_NUMBER_INT, IntegerType) =>
+        parser.getIntValue
+
+      case (VALUE_NUMBER_INT, LongType) =>
+        parser.getLongValue
+
+      case (VALUE_TRUE, BooleanType) =>
+        true
+
+      case (VALUE_FALSE, BooleanType) =>
+        false
+
+      case (START_OBJECT, st: StructType) =>
+        convertObject(factory, parser, st)
+
+      case (START_ARRAY, ArrayType(st, _)) =>
+        convertList(factory, parser, st)
+
+      case (START_OBJECT, ArrayType(st, _)) =>
+        // the business end of SPARK-3308:
+        // when an object is found but an array is requested just wrap it in a list
+        convertField(factory, parser, st) :: Nil
+
+      case (START_OBJECT, MapType(StringType, kt, _)) =>
+        convertMap(factory, parser, kt)
+
+      case (_, udt: UserDefinedType[_]) =>
+        udt.deserialize(convertField(factory, parser, udt.sqlType))
+    }
+  }
+
+  /**
+   * Parse an object from the token stream into a new Row representing the schema.
+   *
+   * Fields in the json that are not defined in the requested schema will be dropped.
+   */
+  private def convertObject(factory: JsonFactory, parser: JsonParser, schema: StructType): Row = {
+    val row = new GenericMutableRow(schema.length)
+    while (nextUntil(parser, JsonToken.END_OBJECT)) {
+      schema.getFieldIndex(parser.getCurrentName) match {
+        case Some(index) =>
+          row.update(index, convertField(factory, parser, schema(index).dataType))
+
+        case None =>
+          parser.skipChildren()
+      }
+    }
+
+    row
+  }
+
+  /**
+   * Parse an object as a Map, preserving all fields
+   */
+  private def convertMap(
+      factory: JsonFactory,
+      parser: JsonParser,
+      valueType: DataType): Map[String, Any] = {
+    val builder = Map.newBuilder[String, Any]
+    while (nextUntil(parser, JsonToken.END_OBJECT)) {
+      builder += parser.getCurrentName -> convertField(factory, parser, valueType)
+    }
+
+    builder.result()
+  }
+
+  private def convertList(
+      factory: JsonFactory,
+      parser: JsonParser,
+      schema: DataType): Seq[Any] = {
+    val builder = Seq.newBuilder[Any]
+    while (nextUntil(parser, JsonToken.END_ARRAY)) {
+      builder += convertField(factory, parser, schema)
+    }
+
+    builder.result()
+  }
+
+  private def parseJson(
+      json: RDD[String],
+      schema: StructType,
+      columnNameOfCorruptRecords: String): RDD[Row] = {
+
+    def failedRecord(record: String): Seq[Row] = {
+      // create a row even if no corrupt record column is present
+      val row = new GenericMutableRow(schema.length)
+      for (corruptIndex <- schema.getFieldIndex(columnNameOfCorruptRecords)) {
+        require(schema(corruptIndex).dataType == StringType)
+        row.update(corruptIndex, record)
+      }
+
+      Seq(row)
+    }
+
+    json.mapPartitions { iter =>
+      val factory = new JsonFactory()
+
+      iter.flatMap { record =>
+        try {
+          val parser = factory.createParser(record)
+          parser.nextToken()
+
+          // to support both object and arrays (see SPARK-3308) we'll start
+          // by converting the StructType schema to an ArrayType and let
+          // convertField wrap an object into a single value array when necessary.
+          convertField(factory, parser, ArrayType(schema)) match {
+            case null => failedRecord(record)
+            case list: Seq[Row @unchecked] => list
+            case _ =>
+              sys.error(
+                s"Failed to parse record $record. Please make sure that each line of the file " +
+                  "(or each string in the RDD) is a valid JSON object or an array of JSON objects.")
+          }
+        } catch {
+          case _: JsonProcessingException =>
+            failedRecord(record)
+        }
+      }
+    }
+  }
+}

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonUtils.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonUtils.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonUtils.scala
new file mode 100644
index 0000000..fde9685
--- /dev/null
+++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JacksonUtils.scala
@@ -0,0 +1,32 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *    http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.json
+
+import com.fasterxml.jackson.core.{JsonParser, JsonToken}
+
+private object JacksonUtils {
+  /**
+   * Advance the parser until a null or a specific token is found
+   */
+  def nextUntil(parser: JsonParser, stopOn: JsonToken): Boolean = {
+    parser.nextToken() match {
+      case null => false
+      case x => x != stopOn
+    }
+  }
+}

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala
index 6e94e70..f62973d 100644
--- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala
+++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala
@@ -440,54 +440,4 @@ private[sql] object JsonRDD extends Logging {
 
     row
   }
-
-  /** Transforms a single Row to JSON using Jackson
-    *
-    * @param rowSchema the schema object used for conversion
-    * @param gen a JsonGenerator object
-    * @param row The row to convert
-    */
-  private[sql] def rowToJSON(rowSchema: StructType, gen: JsonGenerator)(row: Row) = {
-    def valWriter: (DataType, Any) => Unit = {
-      case (_, null) | (NullType, _)  => gen.writeNull()
-      case (StringType, v: String) => gen.writeString(v)
-      case (TimestampType, v: java.sql.Timestamp) => gen.writeString(v.toString)
-      case (IntegerType, v: Int) => gen.writeNumber(v)
-      case (ShortType, v: Short) => gen.writeNumber(v)
-      case (FloatType, v: Float) => gen.writeNumber(v)
-      case (DoubleType, v: Double) => gen.writeNumber(v)
-      case (LongType, v: Long) => gen.writeNumber(v)
-      case (DecimalType(), v: java.math.BigDecimal) => gen.writeNumber(v)
-      case (ByteType, v: Byte) => gen.writeNumber(v.toInt)
-      case (BinaryType, v: Array[Byte]) => gen.writeBinary(v)
-      case (BooleanType, v: Boolean) => gen.writeBoolean(v)
-      case (DateType, v) => gen.writeString(v.toString)
-      case (udt: UserDefinedType[_], v) => valWriter(udt.sqlType, v)
-
-      case (ArrayType(ty, _), v: Seq[_] ) =>
-        gen.writeStartArray()
-        v.foreach(valWriter(ty,_))
-        gen.writeEndArray()
-
-      case (MapType(kv,vv, _), v: Map[_,_]) =>
-        gen.writeStartObject()
-        v.foreach { p =>
-          gen.writeFieldName(p._1.toString)
-          valWriter(vv,p._2)
-        }
-        gen.writeEndObject()
-
-      case (StructType(ty), v: Row) =>
-        gen.writeStartObject()
-        ty.zip(v.toSeq).foreach {
-          case (_, null) =>
-          case (field, v) =>
-            gen.writeFieldName(field.name)
-            valWriter(field.dataType, v)
-        }
-        gen.writeEndObject()
-    }
-
-    valWriter(rowSchema, row)
-  }
 }

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala
index fd0e274..263fafb 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala
@@ -17,13 +17,15 @@
 
 package org.apache.spark.sql.json
 
+import java.io.StringWriter
 import java.sql.{Date, Timestamp}
 
+import com.fasterxml.jackson.core.JsonFactory
 import org.scalactic.Tolerance._
 
 import org.apache.spark.sql.TestData._
 import org.apache.spark.sql.functions._
-import org.apache.spark.sql.json.JsonRDD.{compatibleType, enforceCorrectType}
+import org.apache.spark.sql.json.InferSchema.compatibleType
 import org.apache.spark.sql.sources.LogicalRelation
 import org.apache.spark.sql.test.TestSQLContext
 import org.apache.spark.sql.test.TestSQLContext._
@@ -46,6 +48,18 @@ class JsonSuite extends QueryTest {
           s"${expected}(${expected.getClass}).")
     }
 
+    val factory = new JsonFactory()
+    def enforceCorrectType(value: Any, dataType: DataType): Any = {
+      val writer = new StringWriter()
+      val generator = factory.createGenerator(writer)
+      generator.writeObject(value)
+      generator.flush()
+
+      val parser = factory.createParser(writer.toString)
+      parser.nextToken()
+      JacksonParser.convertField(factory, parser, dataType)
+    }
+
     val intNumber: Int = 2147483647
     checkTypePromotion(intNumber, enforceCorrectType(intNumber, IntegerType))
     checkTypePromotion(intNumber.toLong, enforceCorrectType(intNumber, LongType))
@@ -439,7 +453,7 @@ class JsonSuite extends QueryTest {
     val jsonDF = jsonRDD(primitiveFieldValueTypeConflict)
     jsonDF.registerTempTable("jsonTable")
 
-    // Right now, the analyzer does not promote strings in a boolean expreesion.
+    // Right now, the analyzer does not promote strings in a boolean expression.
     // Number and Boolean conflict: resolve the type as boolean in this query.
     checkAnswer(
       sql("select num_bool from jsonTable where NOT num_bool"),
@@ -508,7 +522,7 @@ class JsonSuite extends QueryTest {
       Row(Seq(), "11", "[1,2,3]", Row(null), "[]") ::
         Row(null, """{"field":false}""", null, null, "{}") ::
         Row(Seq(4, 5, 6), null, "str", Row(null), "[7,8,9]") ::
-        Row(Seq(7), "{}","[str1,str2,33]", Row("str"), """{"field":true}""") :: Nil
+        Row(Seq(7), "{}","""["str1","str2",33]""", Row("str"), """{"field":true}""") :: Nil
     )
   }
 
@@ -566,19 +580,19 @@ class JsonSuite extends QueryTest {
     val analyzed = jsonDF.queryExecution.analyzed
     assert(
       analyzed.isInstanceOf[LogicalRelation],
-      "The DataFrame returned by jsonFile should be based on JSONRelation.")
+      "The DataFrame returned by jsonFile should be based on LogicalRelation.")
     val relation = analyzed.asInstanceOf[LogicalRelation].relation
     assert(
       relation.isInstanceOf[JSONRelation],
       "The DataFrame returned by jsonFile should be based on JSONRelation.")
-    assert(relation.asInstanceOf[JSONRelation].path === path)
+    assert(relation.asInstanceOf[JSONRelation].path === Some(path))
     assert(relation.asInstanceOf[JSONRelation].samplingRatio === (0.49 +- 0.001))
 
     val schema = StructType(StructField("a", LongType, true) :: Nil)
     val logicalRelation =
       jsonFile(path, schema).queryExecution.analyzed.asInstanceOf[LogicalRelation]
     val relationWithSchema = logicalRelation.relation.asInstanceOf[JSONRelation]
-    assert(relationWithSchema.path === path)
+    assert(relationWithSchema.path === Some(path))
     assert(relationWithSchema.schema === schema)
     assert(relationWithSchema.samplingRatio > 0.99)
   }
@@ -1020,15 +1034,24 @@ class JsonSuite extends QueryTest {
   }
 
   test("JSONRelation equality test") {
-    val relation1 =
-      JSONRelation("path", 1.0, Some(StructType(StructField("a", IntegerType, true) :: Nil)))(null)
+    val context = org.apache.spark.sql.test.TestSQLContext
+    val relation1 = new JSONRelation(
+      "path",
+      1.0,
+      Some(StructType(StructField("a", IntegerType, true) :: Nil)),
+      context)
     val logicalRelation1 = LogicalRelation(relation1)
-    val relation2 =
-      JSONRelation("path", 0.5, Some(StructType(StructField("a", IntegerType, true) :: Nil)))(
-        org.apache.spark.sql.test.TestSQLContext)
+    val relation2 = new JSONRelation(
+      "path",
+      0.5,
+      Some(StructType(StructField("a", IntegerType, true) :: Nil)),
+      context)
     val logicalRelation2 = LogicalRelation(relation2)
-    val relation3 =
-      JSONRelation("path", 1.0, Some(StructType(StructField("b", StringType, true) :: Nil)))(null)
+    val relation3 = new JSONRelation(
+      "path",
+      1.0,
+      Some(StructType(StructField("b", StringType, true) :: Nil)),
+      context)
     val logicalRelation3 = LogicalRelation(relation3)
 
     assert(relation1 === relation2)
@@ -1046,7 +1069,7 @@ class JsonSuite extends QueryTest {
 
   test("SPARK-6245 JsonRDD.inferSchema on empty RDD") {
     // This is really a test that it doesn't throw an exception
-    val emptySchema = JsonRDD.inferSchema(empty, 1.0, "")
+    val emptySchema = InferSchema(empty, 1.0, "")
     assert(StructType(Seq()) === emptySchema)
   }
 

http://git-wip-us.apache.org/repos/asf/spark/blob/2d6612cc/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertSuite.scala
----------------------------------------------------------------------
diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertSuite.scala
index 80efe97..50629ea 100644
--- a/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertSuite.scala
+++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertSuite.scala
@@ -21,7 +21,7 @@ import java.io.File
 
 import org.scalatest.BeforeAndAfterAll
 
-import org.apache.spark.sql.{AnalysisException, Row}
+import org.apache.spark.sql.{SaveMode, AnalysisException, Row}
 import org.apache.spark.util.Utils
 
 class InsertSuite extends DataSourceTest with BeforeAndAfterAll {
@@ -100,23 +100,48 @@ class InsertSuite extends DataSourceTest with BeforeAndAfterAll {
   test("INSERT OVERWRITE a JSONRelation multiple times") {
     sql(
       s"""
-        |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt
-      """.stripMargin)
+         |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt
+    """.stripMargin)
+    checkAnswer(
+      sql("SELECT a, b FROM jsonTable"),
+      (1 to 10).map(i => Row(i, s"str$i"))
+    )
 
+    // Writing the table to less part files.
+    val rdd1 = sparkContext.parallelize((1 to 10).map(i => s"""{"a":$i, "b":"str${i}"}"""), 5)
+    jsonRDD(rdd1).registerTempTable("jt1")
     sql(
       s"""
-        |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt
-      """.stripMargin)
+         |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt1
+    """.stripMargin)
+    checkAnswer(
+      sql("SELECT a, b FROM jsonTable"),
+      (1 to 10).map(i => Row(i, s"str$i"))
+    )
 
+    // Writing the table to more part files.
+    val rdd2 = sparkContext.parallelize((1 to 10).map(i => s"""{"a":$i, "b":"str${i}"}"""), 10)
+    jsonRDD(rdd2).registerTempTable("jt2")
     sql(
       s"""
-        |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt
-      """.stripMargin)
-
+         |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt2
+    """.stripMargin)
     checkAnswer(
       sql("SELECT a, b FROM jsonTable"),
       (1 to 10).map(i => Row(i, s"str$i"))
     )
+
+    sql(
+      s"""
+         |INSERT OVERWRITE TABLE jsonTable SELECT a * 10, b FROM jt1
+    """.stripMargin)
+    checkAnswer(
+      sql("SELECT a, b FROM jsonTable"),
+      (1 to 10).map(i => Row(i * 10, s"str$i"))
+    )
+
+    dropTempTable("jt1")
+    dropTempTable("jt2")
   }
 
   test("INSERT INTO not supported for JSONRelation for now") {
@@ -128,6 +153,20 @@ class InsertSuite extends DataSourceTest with BeforeAndAfterAll {
     }
   }
 
+  test("save directly to the path of a JSON table") {
+    table("jt").selectExpr("a * 5 as a", "b").save(path.toString, "json", SaveMode.Overwrite)
+    checkAnswer(
+      sql("SELECT a, b FROM jsonTable"),
+      (1 to 10).map(i => Row(i * 5, s"str$i"))
+    )
+
+    table("jt").save(path.toString, "json", SaveMode.Overwrite)
+    checkAnswer(
+      sql("SELECT a, b FROM jsonTable"),
+      (1 to 10).map(i => Row(i, s"str$i"))
+    )
+  }
+
   test("it is not allowed to write to a table while querying it.") {
     val message = intercept[AnalysisException] {
       sql(


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message