spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From m...@apache.org
Subject spark git commit: [SPARK-5021] [MLlib] Gaussian Mixture now supports Sparse Input
Date Tue, 10 Feb 2015 22:06:07 GMT
Repository: spark
Updated Branches:
  refs/heads/branch-1.3 4e3aa680b -> bba095399


[SPARK-5021] [MLlib] Gaussian Mixture now supports Sparse Input

Following discussion in the Jira.

Author: MechCoder <manojkumarsivaraj334@gmail.com>

Closes #4459 from MechCoder/sparse_gmm and squashes the following commits:

1b18dab [MechCoder] Rewrite syr for sparse matrices
e579041 [MechCoder] Add test for covariance matrix
5cb370b [MechCoder] Separate tests for sparse data
5e096bd [MechCoder] Alphabetize and correct error message
e180f4c [MechCoder] [SPARK-5021] Gaussian Mixture now supports Sparse Input

(cherry picked from commit fd2c032f95bbee342ca539df9e44927482981659)
Signed-off-by: Xiangrui Meng <meng@databricks.com>


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/bba09539
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/bba09539
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/bba09539

Branch: refs/heads/branch-1.3
Commit: bba09539957008e88f3f88043ab1e2180a6a252b
Parents: 4e3aa68
Author: MechCoder <manojkumarsivaraj334@gmail.com>
Authored: Tue Feb 10 14:05:55 2015 -0800
Committer: Xiangrui Meng <meng@databricks.com>
Committed: Tue Feb 10 14:06:04 2015 -0800

----------------------------------------------------------------------
 .../mllib/clustering/GaussianMixture.scala      | 31 ++++-----
 .../org/apache/spark/mllib/linalg/BLAS.scala    | 36 ++++++++++-
 .../distribution/MultivariateGaussian.scala     | 10 +--
 .../mllib/clustering/GaussianMixtureSuite.scala | 66 ++++++++++++++++++--
 .../apache/spark/mllib/linalg/BLASSuite.scala   |  8 +++
 5 files changed, 125 insertions(+), 26 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/bba09539/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
index 0be3014..80584ef 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixture.scala
@@ -19,10 +19,12 @@ package org.apache.spark.mllib.clustering
 
 import scala.collection.mutable.IndexedSeq
 
-import breeze.linalg.{DenseMatrix => BreezeMatrix, DenseVector => BreezeVector, Transpose,
diag}
+import breeze.linalg.{diag, DenseMatrix => BreezeMatrix, DenseVector => BDV, SparseVector
=> BSV,
+  Transpose, Vector => BV}
 
 import org.apache.spark.annotation.Experimental
-import org.apache.spark.mllib.linalg.{BLAS, DenseMatrix, DenseVector, Matrices, Vector, Vectors}
+import org.apache.spark.mllib.linalg.{BLAS, DenseVector, DenseMatrix, Matrices,
+  SparseVector, Vector, Vectors}
 import org.apache.spark.mllib.stat.distribution.MultivariateGaussian
 import org.apache.spark.mllib.util.MLUtils
 import org.apache.spark.rdd.RDD
@@ -130,7 +132,7 @@ class GaussianMixture private (
     val sc = data.sparkContext
     
     // we will operate on the data as breeze data
-    val breezeData = data.map(u => u.toBreeze.toDenseVector).cache()
+    val breezeData = data.map(_.toBreeze).cache()
     
     // Get length of the input vectors
     val d = breezeData.first().length
@@ -148,7 +150,7 @@ class GaussianMixture private (
         (Array.fill(k)(1.0 / k), Array.tabulate(k) { i => 
           val slice = samples.view(i * nSamples, (i + 1) * nSamples)
           new MultivariateGaussian(vectorMean(slice), initCovariance(slice)) 
-        })  
+        })
       }
     }
     
@@ -169,7 +171,7 @@ class GaussianMixture private (
       var i = 0
       while (i < k) {
         val mu = sums.means(i) / sums.weights(i)
-        BLAS.syr(-sums.weights(i), Vectors.fromBreeze(mu).asInstanceOf[DenseVector],
+        BLAS.syr(-sums.weights(i), Vectors.fromBreeze(mu),
           Matrices.fromBreeze(sums.sigmas(i)).asInstanceOf[DenseMatrix])
         weights(i) = sums.weights(i) / sumWeights
         gaussians(i) = new MultivariateGaussian(mu, sums.sigmas(i) / sums.weights(i))
@@ -185,8 +187,8 @@ class GaussianMixture private (
   }
     
   /** Average of dense breeze vectors */
-  private def vectorMean(x: IndexedSeq[BreezeVector[Double]]): BreezeVector[Double] = {
-    val v = BreezeVector.zeros[Double](x(0).length)
+  private def vectorMean(x: IndexedSeq[BV[Double]]): BDV[Double] = {
+    val v = BDV.zeros[Double](x(0).length)
     x.foreach(xi => v += xi)
     v / x.length.toDouble 
   }
@@ -195,10 +197,10 @@ class GaussianMixture private (
    * Construct matrix where diagonal entries are element-wise
    * variance of input vectors (computes biased variance)
    */
-  private def initCovariance(x: IndexedSeq[BreezeVector[Double]]): BreezeMatrix[Double] =
{
+  private def initCovariance(x: IndexedSeq[BV[Double]]): BreezeMatrix[Double] = {
     val mu = vectorMean(x)
-    val ss = BreezeVector.zeros[Double](x(0).length)
-    x.map(xi => (xi - mu) :^ 2.0).foreach(u => ss += u)
+    val ss = BDV.zeros[Double](x(0).length)
+    x.foreach(xi => ss += (xi - mu) :^ 2.0)
     diag(ss / x.length.toDouble)
   }
 }
@@ -207,7 +209,7 @@ class GaussianMixture private (
 private object ExpectationSum {
   def zero(k: Int, d: Int): ExpectationSum = {
     new ExpectationSum(0.0, Array.fill(k)(0.0), 
-      Array.fill(k)(BreezeVector.zeros(d)), Array.fill(k)(BreezeMatrix.zeros(d,d)))
+      Array.fill(k)(BDV.zeros(d)), Array.fill(k)(BreezeMatrix.zeros(d,d)))
   }
   
   // compute cluster contributions for each input point
@@ -215,19 +217,18 @@ private object ExpectationSum {
   def add(
       weights: Array[Double], 
       dists: Array[MultivariateGaussian])
-      (sums: ExpectationSum, x: BreezeVector[Double]): ExpectationSum = {
+      (sums: ExpectationSum, x: BV[Double]): ExpectationSum = {
     val p = weights.zip(dists).map {
       case (weight, dist) => MLUtils.EPSILON + weight * dist.pdf(x)
     }
     val pSum = p.sum
     sums.logLikelihood += math.log(pSum)
-    val xxt = x * new Transpose(x)
     var i = 0
     while (i < sums.k) {
       p(i) /= pSum
       sums.weights(i) += p(i)
       sums.means(i) += x * p(i)
-      BLAS.syr(p(i), Vectors.fromBreeze(x).asInstanceOf[DenseVector],
+      BLAS.syr(p(i), Vectors.fromBreeze(x),
         Matrices.fromBreeze(sums.sigmas(i)).asInstanceOf[DenseMatrix])
       i = i + 1
     }
@@ -239,7 +240,7 @@ private object ExpectationSum {
 private class ExpectationSum(
     var logLikelihood: Double,
     val weights: Array[Double],
-    val means: Array[BreezeVector[Double]],
+    val means: Array[BDV[Double]],
     val sigmas: Array[BreezeMatrix[Double]]) extends Serializable {
   
   val k = weights.length

http://git-wip-us.apache.org/repos/asf/spark/blob/bba09539/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala
index 079f7ca..87052e1 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/BLAS.scala
@@ -235,12 +235,24 @@ private[spark] object BLAS extends Serializable with Logging {
    * @param x the vector x that contains the n elements.
    * @param A the symmetric matrix A. Size of n x n.
    */
-  def syr(alpha: Double, x: DenseVector, A: DenseMatrix) {
+  def syr(alpha: Double, x: Vector, A: DenseMatrix) {
     val mA = A.numRows
     val nA = A.numCols
-    require(mA == nA, s"A is not a symmetric matrix. A: $mA x $nA")
+    require(mA == nA, s"A is not a square matrix (and hence is not symmetric). A: $mA x $nA")
     require(mA == x.size, s"The size of x doesn't match the rank of A. A: $mA x $nA, x: ${x.size}")
 
+    x match {
+      case dv: DenseVector => syr(alpha, dv, A)
+      case sv: SparseVector => syr(alpha, sv, A)
+      case _ =>
+        throw new IllegalArgumentException(s"syr doesn't support vector type ${x.getClass}.")
+    }
+  }
+
+  private def syr(alpha: Double, x: DenseVector, A: DenseMatrix) {
+    val nA = A.numRows
+    val mA = A.numCols
+
     nativeBLAS.dsyr("U", x.size, alpha, x.values, 1, A.values, nA)
 
     // Fill lower triangular part of A
@@ -255,6 +267,26 @@ private[spark] object BLAS extends Serializable with Logging {
     }    
   }
 
+  private def syr(alpha: Double, x: SparseVector, A: DenseMatrix) {
+    val mA = A.numCols
+    val xIndices = x.indices
+    val xValues = x.values
+    val nnz = xValues.length
+    val Avalues = A.values
+
+    var i = 0
+    while (i < nnz) {
+      val multiplier = alpha * xValues(i)
+      val offset = xIndices(i) * mA
+      var j = 0
+      while (j < nnz) {
+        Avalues(xIndices(j) + offset) += multiplier * xValues(j)
+        j += 1
+      }
+      i += 1
+    }
+  }
+
   /**
    * C := alpha * A * B + beta * C
    * @param alpha a scalar to scale the multiplication A * B.

http://git-wip-us.apache.org/repos/asf/spark/blob/bba09539/mllib/src/main/scala/org/apache/spark/mllib/stat/distribution/MultivariateGaussian.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/stat/distribution/MultivariateGaussian.scala
b/mllib/src/main/scala/org/apache/spark/mllib/stat/distribution/MultivariateGaussian.scala
index fd186b5..cd6add9 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/stat/distribution/MultivariateGaussian.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/stat/distribution/MultivariateGaussian.scala
@@ -17,7 +17,7 @@
 
 package org.apache.spark.mllib.stat.distribution
 
-import breeze.linalg.{DenseVector => DBV, DenseMatrix => DBM, diag, max, eigSym}
+import breeze.linalg.{DenseVector => DBV, DenseMatrix => DBM, diag, max, eigSym, Vector
=> BV}
 
 import org.apache.spark.annotation.DeveloperApi;
 import org.apache.spark.mllib.linalg.{Vectors, Vector, Matrices, Matrix}
@@ -62,21 +62,21 @@ class MultivariateGaussian (
   
   /** Returns density of this multivariate Gaussian at given point, x */
   def pdf(x: Vector): Double = {
-    pdf(x.toBreeze.toDenseVector)
+    pdf(x.toBreeze)
   }
   
   /** Returns the log-density of this multivariate Gaussian at given point, x */
   def logpdf(x: Vector): Double = {
-    logpdf(x.toBreeze.toDenseVector)
+    logpdf(x.toBreeze)
   }
   
   /** Returns density of this multivariate Gaussian at given point, x */
-  private[mllib] def pdf(x: DBV[Double]): Double = {
+  private[mllib] def pdf(x: BV[Double]): Double = {
     math.exp(logpdf(x))
   }
   
   /** Returns the log-density of this multivariate Gaussian at given point, x */
-  private[mllib] def logpdf(x: DBV[Double]): Double = {
+  private[mllib] def logpdf(x: BV[Double]): Double = {
     val delta = x - breezeMu
     val v = rootSigmaInv * delta
     u + v.t * v * -0.5

http://git-wip-us.apache.org/repos/asf/spark/blob/bba09539/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala
----------------------------------------------------------------------
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala
b/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala
index c2cd56e..1b46a40 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/clustering/GaussianMixtureSuite.scala
@@ -31,7 +31,7 @@ class GaussianMixtureSuite extends FunSuite with MLlibTestSparkContext {
       Vectors.dense(5.0, 10.0),
       Vectors.dense(4.0, 11.0)
     ))
-    
+
     // expectations
     val Ew = 1.0
     val Emu = Vectors.dense(5.0, 10.0)
@@ -44,6 +44,7 @@ class GaussianMixtureSuite extends FunSuite with MLlibTestSparkContext {
       assert(gmm.gaussians(0).mu ~== Emu absTol 1E-5)
       assert(gmm.gaussians(0).sigma ~== Esigma absTol 1E-5)
     }
+
   }
   
   test("two clusters") {
@@ -54,7 +55,7 @@ class GaussianMixtureSuite extends FunSuite with MLlibTestSparkContext {
       Vectors.dense( 5.7048), Vectors.dense( 4.6567), Vectors.dense( 5.5026),
       Vectors.dense( 4.5605), Vectors.dense( 5.2043), Vectors.dense( 6.2734)
     ))
-  
+
     // we set an initial gaussian to induce expected results
     val initialGmm = new GaussianMixtureModel(
       Array(0.5, 0.5),
@@ -63,7 +64,7 @@ class GaussianMixtureSuite extends FunSuite with MLlibTestSparkContext {
         new MultivariateGaussian(Vectors.dense(1.0), Matrices.dense(1, 1, Array(1.0)))
       )
     )
-    
+
     val Ew = Array(1.0 / 3.0, 2.0 / 3.0)
     val Emu = Array(Vectors.dense(-4.3673), Vectors.dense(5.1604))
     val Esigma = Array(Matrices.dense(1, 1, Array(1.1098)), Matrices.dense(1, 1, Array(0.86644)))
@@ -72,7 +73,7 @@ class GaussianMixtureSuite extends FunSuite with MLlibTestSparkContext {
       .setK(2)
       .setInitialModel(initialGmm)
       .run(data)
-      
+
     assert(gmm.weights(0) ~== Ew(0) absTol 1E-3)
     assert(gmm.weights(1) ~== Ew(1) absTol 1E-3)
     assert(gmm.gaussians(0).mu ~== Emu(0) absTol 1E-3)
@@ -80,4 +81,61 @@ class GaussianMixtureSuite extends FunSuite with MLlibTestSparkContext
{
     assert(gmm.gaussians(0).sigma ~== Esigma(0) absTol 1E-3)
     assert(gmm.gaussians(1).sigma ~== Esigma(1) absTol 1E-3)
   }
+
+  test("single cluster with sparse data") {
+    val data = sc.parallelize(Array(
+      Vectors.sparse(3, Array(0, 2), Array(4.0, 2.0)),
+      Vectors.sparse(3, Array(0, 2), Array(2.0, 4.0)),
+      Vectors.sparse(3, Array(1), Array(6.0))
+      ))
+
+    val Ew = 1.0
+    val Emu = Vectors.dense(2.0, 2.0, 2.0)
+    val Esigma = Matrices.dense(3, 3,
+      Array(8.0 / 3.0, -4.0, 4.0 / 3.0, -4.0, 8.0, -4.0, 4.0 / 3.0, -4.0, 8.0 / 3.0)
+      )
+
+    val seeds = Array(42, 1994, 27, 11, 0)
+    seeds.foreach { seed =>
+      val gmm = new GaussianMixture().setK(1).setSeed(seed).run(data)
+      assert(gmm.weights(0) ~== Ew absTol 1E-5)
+      assert(gmm.gaussians(0).mu ~== Emu absTol 1E-5)
+      assert(gmm.gaussians(0).sigma ~== Esigma absTol 1E-5)
+    }
+  }
+
+  test("two clusters with sparse data") {
+    val data = sc.parallelize(Array(
+      Vectors.dense(-5.1971), Vectors.dense(-2.5359), Vectors.dense(-3.8220),
+      Vectors.dense(-5.2211), Vectors.dense(-5.0602), Vectors.dense( 4.7118),
+      Vectors.dense( 6.8989), Vectors.dense( 3.4592), Vectors.dense( 4.6322),
+      Vectors.dense( 5.7048), Vectors.dense( 4.6567), Vectors.dense( 5.5026),
+      Vectors.dense( 4.5605), Vectors.dense( 5.2043), Vectors.dense( 6.2734)
+    ))
+
+    val sparseData = data.map(point => Vectors.sparse(1, Array(0), point.toArray))
+    // we set an initial gaussian to induce expected results
+    val initialGmm = new GaussianMixtureModel(
+      Array(0.5, 0.5),
+      Array(
+        new MultivariateGaussian(Vectors.dense(-1.0), Matrices.dense(1, 1, Array(1.0))),
+        new MultivariateGaussian(Vectors.dense(1.0), Matrices.dense(1, 1, Array(1.0)))
+      )
+    )
+    val Ew = Array(1.0 / 3.0, 2.0 / 3.0)
+    val Emu = Array(Vectors.dense(-4.3673), Vectors.dense(5.1604))
+    val Esigma = Array(Matrices.dense(1, 1, Array(1.1098)), Matrices.dense(1, 1, Array(0.86644)))
+
+    val sparseGMM = new GaussianMixture()
+      .setK(2)
+      .setInitialModel(initialGmm)
+      .run(data)
+
+    assert(sparseGMM.weights(0) ~== Ew(0) absTol 1E-3)
+    assert(sparseGMM.weights(1) ~== Ew(1) absTol 1E-3)
+    assert(sparseGMM.gaussians(0).mu ~== Emu(0) absTol 1E-3)
+    assert(sparseGMM.gaussians(1).mu ~== Emu(1) absTol 1E-3)
+    assert(sparseGMM.gaussians(0).sigma ~== Esigma(0) absTol 1E-3)
+    assert(sparseGMM.gaussians(1).sigma ~== Esigma(1) absTol 1E-3)
+  }
 }

http://git-wip-us.apache.org/repos/asf/spark/blob/bba09539/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala
----------------------------------------------------------------------
diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala
index b0b78ac..002cb25 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/BLASSuite.scala
@@ -166,6 +166,14 @@ class BLASSuite extends FunSuite {
         syr(alpha, y, dA)
       }
     }
+
+    val xSparse = new SparseVector(4, Array(0, 2, 3), Array(1.0, 3.0, 4.0))
+    val dD = new DenseMatrix(4, 4,
+      Array(0.0, 1.2, 2.2, 3.1, 1.2, 3.2, 5.3, 4.6, 2.2, 5.3, 1.8, 3.0, 3.1, 4.6, 3.0, 0.8))
+    syr(0.1, xSparse, dD)
+    val expectedSparse = new DenseMatrix(4, 4,
+      Array(0.1, 1.2, 2.5, 3.5, 1.2, 3.2, 5.3, 4.6, 2.5, 5.3, 2.7, 4.2, 3.5, 4.6, 4.2, 2.4))
+    assert(dD ~== expectedSparse absTol 1e-15)
   }
 
   test("gemm") {


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message