spark-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From m...@apache.org
Subject spark git commit: [SPARK-4891][PySpark][MLlib] Add gamma/log normal/exp dist sampling to P...
Date Thu, 08 Jan 2015 23:03:47 GMT
Repository: spark
Updated Branches:
  refs/heads/master a00af6bec -> c9c8b219a


[SPARK-4891][PySpark][MLlib] Add gamma/log normal/exp dist sampling to P...

...ySpark MLlib

This is a follow up to PR3680 https://github.com/apache/spark/pull/3680 .

Author: RJ Nowling <rnowling@gmail.com>

Closes #3955 from rnowling/spark4891 and squashes the following commits:

1236a01 [RJ Nowling] Fix Python style issues
7a01a78 [RJ Nowling] Fix Python style issues
174beab [RJ Nowling] [SPARK-4891][PySpark][MLlib] Add gamma/log normal/exp dist sampling to
PySpark MLlib


Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/c9c8b219
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/c9c8b219
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/c9c8b219

Branch: refs/heads/master
Commit: c9c8b219ad81c4c30bc1598ff35b01f964570c29
Parents: a00af6b
Author: RJ Nowling <rnowling@gmail.com>
Authored: Thu Jan 8 15:03:43 2015 -0800
Committer: Xiangrui Meng <meng@databricks.com>
Committed: Thu Jan 8 15:03:43 2015 -0800

----------------------------------------------------------------------
 .../spark/mllib/api/python/PythonMLLibAPI.scala |  88 +++++++++
 python/pyspark/mllib/rand.py                    | 187 +++++++++++++++++++
 2 files changed, 275 insertions(+)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/spark/blob/c9c8b219/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala
index c4e5fd8..555da8c 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala
@@ -625,6 +625,21 @@ class PythonMLLibAPI extends Serializable {
   }
 
   /**
+   * Java stub for Python mllib RandomRDDGenerators.logNormalRDD()
+   */
+  def logNormalRDD(jsc: JavaSparkContext,
+      mean: Double,
+      std: Double,
+      size: Long,
+      numPartitions: java.lang.Integer,
+      seed: java.lang.Long): JavaRDD[Double] = {
+    val parts = getNumPartitionsOrDefault(numPartitions, jsc)
+    val s = getSeedOrDefault(seed)
+    RG.logNormalRDD(jsc.sc, mean, std, size, parts, s)
+  }
+
+
+  /**
    * Java stub for Python mllib RandomRDDGenerators.poissonRDD()
    */
   def poissonRDD(jsc: JavaSparkContext,
@@ -638,6 +653,33 @@ class PythonMLLibAPI extends Serializable {
   }
 
   /**
+   * Java stub for Python mllib RandomRDDGenerators.exponentialRDD()
+   */
+  def exponentialRDD(jsc: JavaSparkContext,
+      mean: Double,
+      size: Long,
+      numPartitions: java.lang.Integer,
+      seed: java.lang.Long): JavaRDD[Double] = {
+    val parts = getNumPartitionsOrDefault(numPartitions, jsc)
+    val s = getSeedOrDefault(seed)
+    RG.exponentialRDD(jsc.sc, mean, size, parts, s)
+  }
+
+  /**
+   * Java stub for Python mllib RandomRDDGenerators.gammaRDD()
+   */
+  def gammaRDD(jsc: JavaSparkContext,
+      shape: Double,
+      scale: Double,
+      size: Long,
+      numPartitions: java.lang.Integer,
+      seed: java.lang.Long): JavaRDD[Double] = {
+    val parts = getNumPartitionsOrDefault(numPartitions, jsc)
+    val s = getSeedOrDefault(seed)
+    RG.gammaRDD(jsc.sc, shape, scale, size, parts, s)
+  }
+
+  /**
    * Java stub for Python mllib RandomRDDGenerators.uniformVectorRDD()
    */
   def uniformVectorRDD(jsc: JavaSparkContext,
@@ -664,6 +706,22 @@ class PythonMLLibAPI extends Serializable {
   }
 
   /**
+   * Java stub for Python mllib RandomRDDGenerators.logNormalVectorRDD()
+   */
+  def logNormalVectorRDD(jsc: JavaSparkContext,
+      mean: Double,
+      std: Double,
+      numRows: Long,
+      numCols: Int,
+      numPartitions: java.lang.Integer,
+      seed: java.lang.Long): JavaRDD[Vector] = {
+    val parts = getNumPartitionsOrDefault(numPartitions, jsc)
+    val s = getSeedOrDefault(seed)
+    RG.logNormalVectorRDD(jsc.sc, mean, std, numRows, numCols, parts, s)
+  }
+
+
+  /**
    * Java stub for Python mllib RandomRDDGenerators.poissonVectorRDD()
    */
   def poissonVectorRDD(jsc: JavaSparkContext,
@@ -677,6 +735,36 @@ class PythonMLLibAPI extends Serializable {
     RG.poissonVectorRDD(jsc.sc, mean, numRows, numCols, parts, s)
   }
 
+  /**
+   * Java stub for Python mllib RandomRDDGenerators.exponentialVectorRDD()
+   */
+  def exponentialVectorRDD(jsc: JavaSparkContext,
+      mean: Double,
+      numRows: Long,
+      numCols: Int,
+      numPartitions: java.lang.Integer,
+      seed: java.lang.Long): JavaRDD[Vector] = {
+    val parts = getNumPartitionsOrDefault(numPartitions, jsc)
+    val s = getSeedOrDefault(seed)
+    RG.exponentialVectorRDD(jsc.sc, mean, numRows, numCols, parts, s)
+  }
+
+  /**
+   * Java stub for Python mllib RandomRDDGenerators.gammaVectorRDD()
+   */
+  def gammaVectorRDD(jsc: JavaSparkContext,
+      shape: Double,
+      scale: Double,
+      numRows: Long,
+      numCols: Int,
+      numPartitions: java.lang.Integer,
+      seed: java.lang.Long): JavaRDD[Vector] = {
+    val parts = getNumPartitionsOrDefault(numPartitions, jsc)
+    val s = getSeedOrDefault(seed)
+    RG.gammaVectorRDD(jsc.sc, shape, scale, numRows, numCols, parts, s)
+  }
+
+
 }
 
 /**

http://git-wip-us.apache.org/repos/asf/spark/blob/c9c8b219/python/pyspark/mllib/rand.py
----------------------------------------------------------------------
diff --git a/python/pyspark/mllib/rand.py b/python/pyspark/mllib/rand.py
index cb4304f..20ee9d7 100644
--- a/python/pyspark/mllib/rand.py
+++ b/python/pyspark/mllib/rand.py
@@ -100,6 +100,38 @@ class RandomRDDs(object):
         return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
 
     @staticmethod
+    def logNormalRDD(sc, mean, std, size, numPartitions=None, seed=None):
+        """
+        Generates an RDD comprised of i.i.d. samples from the log normal
+        distribution with the input mean and standard distribution.
+
+        :param sc: SparkContext used to create the RDD.
+        :param mean: mean for the log Normal distribution
+        :param std: std for the log Normal distribution
+        :param size: Size of the RDD.
+        :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
+        :param seed: Random seed (default: a random long integer).
+        :return: RDD of float comprised of i.i.d. samples ~ log N(mean, std).
+
+        >>> from math import sqrt, exp
+        >>> mean = 0.0
+        >>> std = 1.0
+        >>> expMean = exp(mean + 0.5 * std * std)
+        >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std))
+        >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2L)
+        >>> stats = x.stats()
+        >>> stats.count()
+        1000L
+        >>> abs(stats.mean() - expMean) < 0.5
+        True
+        >>> from math import sqrt
+        >>> abs(stats.stdev() - expStd) < 0.5
+        True
+        """
+        return callMLlibFunc("logNormalRDD", sc._jsc, float(mean), float(std),
+                             size, numPartitions, seed)
+
+    @staticmethod
     def poissonRDD(sc, mean, size, numPartitions=None, seed=None):
         """
         Generates an RDD comprised of i.i.d. samples from the Poisson
@@ -126,6 +158,63 @@ class RandomRDDs(object):
         return callMLlibFunc("poissonRDD", sc._jsc, float(mean), size, numPartitions, seed)
 
     @staticmethod
+    def exponentialRDD(sc, mean, size, numPartitions=None, seed=None):
+        """
+        Generates an RDD comprised of i.i.d. samples from the Exponential
+        distribution with the input mean.
+
+        :param sc: SparkContext used to create the RDD.
+        :param mean: Mean, or 1 / lambda, for the Exponential distribution.
+        :param size: Size of the RDD.
+        :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
+        :param seed: Random seed (default: a random long integer).
+        :return: RDD of float comprised of i.i.d. samples ~ Exp(mean).
+
+        >>> mean = 2.0
+        >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2L)
+        >>> stats = x.stats()
+        >>> stats.count()
+        1000L
+        >>> abs(stats.mean() - mean) < 0.5
+        True
+        >>> from math import sqrt
+        >>> abs(stats.stdev() - sqrt(mean)) < 0.5
+        True
+        """
+        return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions,
seed)
+
+    @staticmethod
+    def gammaRDD(sc, shape, scale, size, numPartitions=None, seed=None):
+        """
+        Generates an RDD comprised of i.i.d. samples from the Gamma
+        distribution with the input shape and scale.
+
+        :param sc: SparkContext used to create the RDD.
+        :param shape: shape (> 0) parameter for the Gamma distribution
+        :param scale: scale (> 0) parameter for the Gamma distribution
+        :param size: Size of the RDD.
+        :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
+        :param seed: Random seed (default: a random long integer).
+        :return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale).
+
+        >>> from math import sqrt
+        >>> shape = 1.0
+        >>> scale = 2.0
+        >>> expMean = shape * scale
+        >>> expStd = sqrt(shape * scale * scale)
+        >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2L)
+        >>> stats = x.stats()
+        >>> stats.count()
+        1000L
+        >>> abs(stats.mean() - expMean) < 0.5
+        True
+        >>> abs(stats.stdev() - expStd) < 0.5
+        True
+        """
+        return callMLlibFunc("gammaRDD", sc._jsc, float(shape),
+                             float(scale), size, numPartitions, seed)
+
+    @staticmethod
     @toArray
     def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
         """
@@ -177,6 +266,40 @@ class RandomRDDs(object):
 
     @staticmethod
     @toArray
+    def logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions=None, seed=None):
+        """
+        Generates an RDD comprised of vectors containing i.i.d. samples drawn
+        from the log normal distribution.
+
+        :param sc: SparkContext used to create the RDD.
+        :param mean: Mean of the log normal distribution
+        :param std: Standard Deviation of the log normal distribution
+        :param numRows: Number of Vectors in the RDD.
+        :param numCols: Number of elements in each Vector.
+        :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
+        :param seed: Random seed (default: a random long integer).
+        :return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`.
+
+        >>> import numpy as np
+        >>> from math import sqrt, exp
+        >>> mean = 0.0
+        >>> std = 1.0
+        >>> expMean = exp(mean + 0.5 * std * std)
+        >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std))
+        >>> mat = np.matrix(RandomRDDs.logNormalVectorRDD(sc, mean, std, \
+                               100, 100, seed=1L).collect())
+        >>> mat.shape
+        (100, 100)
+        >>> abs(mat.mean() - expMean) < 0.1
+        True
+        >>> abs(mat.std() - expStd) < 0.1
+        True
+        """
+        return callMLlibFunc("logNormalVectorRDD", sc._jsc, float(mean), float(std),
+                             numRows, numCols, numPartitions, seed)
+
+    @staticmethod
+    @toArray
     def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
         """
         Generates an RDD comprised of vectors containing i.i.d. samples drawn
@@ -205,6 +328,70 @@ class RandomRDDs(object):
         return callMLlibFunc("poissonVectorRDD", sc._jsc, float(mean), numRows, numCols,
                              numPartitions, seed)
 
+    @staticmethod
+    @toArray
+    def exponentialVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
+        """
+        Generates an RDD comprised of vectors containing i.i.d. samples drawn
+        from the Exponential distribution with the input mean.
+
+        :param sc: SparkContext used to create the RDD.
+        :param mean: Mean, or 1 / lambda, for the Exponential distribution.
+        :param numRows: Number of Vectors in the RDD.
+        :param numCols: Number of elements in each Vector.
+        :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`)
+        :param seed: Random seed (default: a random long integer).
+        :return: RDD of Vector with vectors containing i.i.d. samples ~ Exp(mean).
+
+        >>> import numpy as np
+        >>> mean = 0.5
+        >>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1L)
+        >>> mat = np.mat(rdd.collect())
+        >>> mat.shape
+        (100, 100)
+        >>> abs(mat.mean() - mean) < 0.5
+        True
+        >>> from math import sqrt
+        >>> abs(mat.std() - sqrt(mean)) < 0.5
+        True
+        """
+        return callMLlibFunc("exponentialVectorRDD", sc._jsc, float(mean), numRows, numCols,
+                             numPartitions, seed)
+
+    @staticmethod
+    @toArray
+    def gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions=None, seed=None):
+        """
+        Generates an RDD comprised of vectors containing i.i.d. samples drawn
+        from the Gamma distribution.
+
+        :param sc: SparkContext used to create the RDD.
+        :param shape: Shape (> 0) of the Gamma distribution
+        :param scale: Scale (> 0) of the Gamma distribution
+        :param numRows: Number of Vectors in the RDD.
+        :param numCols: Number of elements in each Vector.
+        :param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
+        :param seed: Random seed (default: a random long integer).
+        :return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale).
+
+        >>> import numpy as np
+        >>> from math import sqrt
+        >>> shape = 1.0
+        >>> scale = 2.0
+        >>> expMean = shape * scale
+        >>> expStd = sqrt(shape * scale * scale)
+        >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, \
+                       100, 100, seed=1L).collect())
+        >>> mat.shape
+        (100, 100)
+        >>> abs(mat.mean() - expMean) < 0.1
+        True
+        >>> abs(mat.std() - expStd) < 0.1
+        True
+        """
+        return callMLlibFunc("gammaVectorRDD", sc._jsc, float(shape), float(scale),
+                             numRows, numCols, numPartitions, seed)
+
 
 def _test():
     import doctest


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscribe@spark.apache.org
For additional commands, e-mail: commits-help@spark.apache.org


Mime
View raw message