singa-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [singa] nudles commented on a change in pull request #697: New Model Layer Operator API
Date Tue, 02 Jun 2020 02:23:38 GMT

nudles commented on a change in pull request #697:
URL: https://github.com/apache/singa/pull/697#discussion_r433585960



##########
File path: examples/cnn/model/resnet.py
##########
@@ -21,30 +21,31 @@
 # https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
 
 from singa import autograd
-from singa import module
+from singa import layer
+from singa import model
 
 
 def conv3x3(in_planes, out_planes, stride=1):
     """3x3 convolution with padding"""
-    return autograd.Conv2d(
+    return layer.Conv2d(
         in_planes,
         out_planes,
-        kernel_size=3,
+        3,
         stride=stride,
         padding=1,
         bias=False,
     )
 
 
-class BasicBlock(autograd.Layer):
+class BasicBlock(layer.Layer):
     expansion = 1
 
     def __init__(self, inplanes, planes, stride=1, downsample=None):
         super(BasicBlock, self).__init__()
         self.conv1 = conv3x3(inplanes, planes, stride)
-        self.bn1 = autograd.BatchNorm2d(planes)
+        self.bn1 = layer.BatchNorm2d(planes)

Review comment:
       I think that is more consistent.
   otherwise, it is a bit confusing when to use autograd.xx and when to use layer.xxx




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
users@infra.apache.org



Mime
View raw message