singa-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [singa] chrishkchris commented on issue #651: [WIP ]Simply example APIs
Date Sat, 04 Apr 2020 16:00:58 GMT
chrishkchris commented on issue #651: [WIP ]Simply example APIs
URL: https://github.com/apache/singa/pull/651#issuecomment-609049842
 
 
   > I suggest to merge the examples under `examples/autograd` into the follow structure.
   > 
   > ```
   > autograd
   >     train.py 
   >     train_mpi.py
   >     train_multiprocess.py
   >     data   # define the data loading and preprocessing
   >         cifar10.py
   >         mnist.py
   >     model   # define the model
   >         cnn.py
   >         resnet.py
   >         xception.py
   > ```
   > 
   > The pseudo code of each file:
   > 
   > ```python
   > # train.py
   > def run(max_epoch, worker_id, num_workers, model, data, sgd):
   >     if model == 'resnet':
   >        from model import resnet
   >          model = resnet.create_model()
   >     elif model == 'cnn':
   >          model = cnn.create_model()    
   >     ....
   >     if data == 'cifar10':
   >         from data import cifar10:
   >            train_x, train_y, val_x, val_y = cifar10.load()
   >     elif data == 'mnist':
   >          ....
   >     
   >     train_x, train_y, val_x, val_y = partition(worker_id, num_workers, train_x, train_y,
val_x, val_y)
   >    
   >     # bp and sgd
   > 
   > if __name__ == '__main__':
   >    # use argparse to get command config: max_epoch, model, data, etc. for single gpu
training
   >     sgd = # create sgd
   >     run(0, 1, ..., sgd)
   > 
   > # train_mpi.py
   > if __name__ == '__main__':
   >    # use argparse to get command args: max_epoch, model, data, etc. for multi-gpu
training
   >     sgd = # create sgd
   >     dist_sgd = DistOpt(sgd...)
   >     run(dist_sgd.rank, dist_sgd.world_size, ... dist_sgd)
   > 
   > # train_multiprocess.py
   > def run(rank, num_gpu, ...):
   >     sgd = ...
   >     dist_sgd = DistOpt(sgd)
   >     train.run(rank, num_gpu, ... dist_sgd)
   > 
   > if __name__ == '__main__':
   >    # use argparse to get command args: max_epoch, model, data, etc. for multi-gpu
training
   >     nccl_id = ...
   >     process = []
   >     for worker_id in range(0, gpu_per_node):        
   >         process.append(multiprocessing.Process(target=run, args=(worker_id, ... nccl_id)))

   > 
   >     for p in process:
   >         p.start()
   > ```
   
   thanks! I will work on it. Since seems a lot of work, to speed up may need Rulin to help

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services

Mime
View raw message