singa-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [singa] nudles edited a comment on issue #651: [WIP ]Simply example APIs
Date Sat, 04 Apr 2020 15:37:22 GMT
nudles edited a comment on issue #651: [WIP ]Simply example APIs
URL: https://github.com/apache/singa/pull/651#issuecomment-609045570
 
 
   I suggest to merge the examples under `examples/autograd` into the follow structure.
   
   ```
   autograd
       train.py 
       train_mpi.py
       train_multiprocess.py
       data   # define the data loading and preprocessing
           cifar10.py
           mnist.py
       model   # define the model
           cnn.py
           resnet.py
           xception.py
   ```
   
   The pseudo code of each file:
   ```python
   # train.py
   def run(max_epoch, worker_id, num_workers, model, data, sgd):
       if model == 'resnet':
          from model import resnet
            model = resnet.create_model()
       elif model == 'cnn':
            model = cnn.create_model()    
       ....
       if data == 'cifar10':
           from data import cifar10:
              train_x, train_y, val_x, val_y = cifar10.load()
       elif data == 'mnist':
            ....
       
       train_x, train_y, val_x, val_y = partition(worker_id, num_workers, train_x, train_y,
val_x, val_y)
      
       # bp and sgd
   
   if __name__ == '__main__':
      # use argparse to get command config: max_epoch, model, data, etc. for single gpu training
       sgd = # create sgd
       run(0, 1, ..., sgd)
   
   # train_mpi.py
   if __name__ == '__main__':
      # use argparse to get command args: max_epoch, model, data, etc. for multi-gpu training
       sgd = # create sgd
       dist_sgd = DistOpt(sgd...)
       run(dist_sgd.rank, dist_sgd.world_size, ... dist_sgd)
   
   # train_multiprocess.py
   def run(rank, num_gpu, ...):
       sgd = ...
       dist_sgd = DistOpt(sgd)
       train.run(rank, num_gpu, ... dist_sgd)
   
   if __name__ == '__main__':
      # use argparse to get command args: max_epoch, model, data, etc. for multi-gpu training
       nccl_id = ...
       process = []
       for worker_id in range(0, gpu_per_node):        
           process.append(multiprocessing.Process(target=run, args=(worker_id, ... nccl_id)))

   
       for p in process:
           p.start()
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services

Mime
View raw message