singa-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [incubator-singa] nudles commented on a change in pull request #524: SINGA-474 prelu, add, equal, selu, elu operator
Date Sat, 24 Aug 2019 23:12:55 GMT
nudles commented on a change in pull request #524: SINGA-474 prelu,add,equal,selu,elu operator
URL: https://github.com/apache/incubator-singa/pull/524#discussion_r317377086
 
 

 ##########
 File path: test/python/test_operation.py
 ##########
 @@ -1587,25 +1587,148 @@ def test_min_gpu(self):
         np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx1)),
DX1, decimal=5)
 
 
-def test_HardSigmoid(self):
-    def test_helper(gpu=False):
-        x = np.random.randn(3, 2)
-        #y = max(0, min(1, alpha * x + gamma))
-        a=0.2
-        g=0.5
-        y = np.clip(x * 0.2 + 0.5, 0, 1)
-        grad=(0<(np.clip(x * 0.2 + 0.5, 0, 1)) * (np.clip(x * 0.2 + 0.5, 0, 1)<1))*0.2
-        x = tensor.from_numpy(x)
-        if(gpu):
-            x.to_device(gpu_dev)
-        result = autograd.hardsigmoid(x,a,g)
-        dy = tensor.from_numpy(np.random.randn((3,2)).astype(np.float32))
-        dx = result.creator.backward(dy.data)
-        np.testing.assert_array_almost_equal(tensor.to_numpy(result), y, decimal=5)
-        np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx)),
grad, decimal=5)
-    test_helper(False)
-    test_helper(True)
+    def test_HardSigmoid(self):
+        def test_helper(gpu=False):
+            x = np.random.randn(3, 2)
+            #y = max(0, min(1, alpha * x + gamma))
+            a=0.2
+            g=0.5
+            y = np.clip(x * 0.2 + 0.5, 0, 1)
+            dy=np.random.randn(3,2)
+            grad=(0<(np.clip(x * 0.2 + 0.5, 0, 1)) * (np.clip(x * 0.2 + 0.5, 0, 1)<1))*0.2
* dy
+            x = tensor.from_numpy(x)
+            dy = tensor.from_numpy(dy)
+            if(gpu):
+                x.to_device(gpu_dev)
+                dy.to_device(gpu_dev)
+            result = autograd.hardsigmoid(x,a,g)
+            dx = result.creator.backward(dy.data)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(result), y, decimal=5)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx)),
grad, decimal=5)
+        test_helper(False)
+        test_helper(True)
+
+    @unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
+    def test_prelu(self):
+        def hepler(gpu):
+            x = np.random.randn(3, 2)
+            slope = np.random.randn(3, 2)
+            y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope
+            dy = np.random.randn(3, 2)
+            x0=x.copy()
+            x0[x0>0]=1
+            x0[x0<1]=0
+            grad0=(x0+(1-x0)*slope)*dy
+            grad1 = (1-x0)*x*dy
+            x = tensor.from_numpy(x)
+            slope = tensor.from_numpy(slope)
+            dy = tensor.from_numpy(dy)
+            if(gpu):
+                x.to_device(gpu_dev)
+                slope.to_device(gpu_dev)
+                dy.to_device(gpu_dev)
+            result = autograd.prelu(x,slope)
+            dx0,dx1 = result.creator.backward(dy.data)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(result), y, decimal=5)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx0)),
grad0, decimal=5)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx1)),
grad1, decimal=5)
+        hepler(False)
+        hepler(True)
+
+    @unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
+    def test_SeLU(self):
+        def test_helper(gpu):
+            x = np.random.randn(3, 2)
+            a=0.2
+            g=0.3
+            y = np.clip(x, 0, np.inf) * g + (np.exp(np.clip(x, -np.inf, 0)) - 1) * a * g
+            dy=np.random.randn(3, 2)
+            grad = (np.exp(np.clip(x, -np.inf, 0))) * g
+            grad[x<=0]=grad[x<=0]*a
+            grad*=dy
+            x = tensor.from_numpy(x)
+
 
+            result = autograd.selu(x,a,g)
+            dy = tensor.from_numpy(dy)
+            if(gpu):
+                dy.to_device(gpu_dev)
+                x.to_device(gpu_dev)
+            dx = result.creator.backward(dy.data)
+
+            np.testing.assert_array_almost_equal(tensor.to_numpy(result), y, decimal=5)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx)),
grad, decimal=5)
+        test_helper(False)
+        test_helper(True)
+
+
+    @unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
+    def test_Equal(self):
+        def test_helper(gpu):
+            x0 = np.random.randn(3, 2)
+            x1 = np.random.randn(3, 2)
+            y = np.equal(x0,x1)
+            x0 = tensor.from_numpy(x0)
+            x1 = tensor.from_numpy(x1)
+            if(gpu):
+                x0.to_device(gpu_dev)
+                x1.to_device(gpu_dev)
+
+            result = autograd.equal(x0,x1)
+
+            np.testing.assert_array_almost_equal(tensor.to_numpy(result), y, decimal=5)
+        test_helper(False)
+        test_helper(True)
+
+    @unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
+    def test_Elu(self):
+        def test_helper(gpu):
+            #f(x) = alpha * (exp(x) - 1.) for x < 0, f(x) = x for x >= 0
+            x = np.random.randn(3, 2)
+            y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 1.0
+            dy=np.random.randn(3, 2)
+            grad=np.exp(np.clip(x, -np.inf, 0))*dy
+
+            x = tensor.from_numpy(x)
+            result = autograd.elu(x)
+            dy = tensor.from_numpy(dy)
+            if(gpu):
+                dy.to_device(gpu_dev)
+                x.to_device(gpu_dev)
+            dx = result.creator.backward(dy.data)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(result), y, decimal=5)
+            np.testing.assert_array_almost_equal(tensor.to_numpy(tensor.from_raw_tensor(dx)),
grad, decimal=5)
+        test_helper(False)
+        test_helper(True)
+
+    @unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
 
 Review comment:
   will it skip the cpu test as well?

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services

Mime
View raw message