singa-dev mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "thao p nguyen (JIRA)" <j...@apache.org>
Subject [jira] [Updated] (SINGA-444) Can not run Model classes examples on Singa documentation
Date Fri, 12 Apr 2019 07:59:00 GMT

     [ https://issues.apache.org/jira/browse/SINGA-444?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]

thao p nguyen updated SINGA-444:
--------------------------------
    Summary: Can not run Model classes examples on Singa documentation  (was: Can not run
Models' examples on Singa documentation)

> Can not run Model classes examples on Singa documentation
> ---------------------------------------------------------
>
>                 Key: SINGA-444
>                 URL: https://issues.apache.org/jira/browse/SINGA-444
>             Project: Singa
>          Issue Type: Bug
>          Components: Documentation
>         Environment: - python 3.6.8
> - Ubuntu 18.10
>            Reporter: thao p nguyen
>            Priority: Critical
>
> Following the Singa documentation, the API code for running models' example does not
work. Below are messages:
> 1) FeedForward Net
> >>> from singa import tensor
> >>> from singa import loss
> >>> x = tensor.Tensor((3, 5))
> >>> x.uniform(0, 1)  # randomly genearte the prediction activation
> >>> y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int))  # set the truth
> Traceback (most recent call last):
>   File "<stdin>", line 1, in <module>
> NameError: name 'np' is not defined
> >>> f = loss.SoftmaxCrossEntropy()
> >>> l = f.forward(True, x, y)  # l is tensor with 3 loss values
> Traceback (most recent call last):
>   File "<stdin>", line 1, in <module>
> NameError: name 'y' is not defined
> >>> g = f.backward()  # g is a tensor containing all gradients of x w.r.t l
> Segmentation fault (core dumped)
> 2) Loss
> >>> from singa import tensor
> >>> from singa import loss
> >>> 
> >>> x = tensor.Tensor((3, 5))
> >>> x.uniform(0, 1)  # randomly genearte the prediction activation
> >>> y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int))  # set the truth
> Traceback (most recent call last):
>   File "<stdin>", line 1, in <module>
> NameError: name 'np' is not defined
> >>> 
> >>> f = loss.SoftmaxCrossEntropy()
> >>> l = f.forward(True, x, y)  # l is tensor with 3 loss values
> Traceback (most recent call last):
>   File "<stdin>", line 1, in <module>
> NameError: name 'y' is not defined
> >>> g = f.backward()  # g is a tensor containing all gradients of x w.r.t l
> 3) >>> from singa import tensor
> >>> from singa import metric
> >>> 
> >>> x = tensor.Tensor((3, 5))
> >>> x.uniform(0, 1) # randomly genearte the prediction activation
> >>> x = tensor.SoftMax(x) # normalize the prediction into probabilities
> Traceback (most recent call last):
>  File "<stdin>", line 1, in <module>
> AttributeError: module 'singa.tensor' has no attribute 'SoftMax'
> >>> y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int)) # set the truth
> Traceback (most recent call last):
>  File "<stdin>", line 1, in <module>
> NameError: name 'np' is not defined
> >>> 
> >>> f = metric.Accuracy()
> >>> acc = f.evaluate(x, y) # averaged accuracy over all 3 samples in x



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Mime
View raw message