singa-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From wang...@apache.org
Subject [02/22] incubator-singa git commit: SINGA-237 New documentation files for SINGA v1.0
Date Mon, 15 Aug 2016 16:15:15 GMT
http://git-wip-us.apache.org/repos/asf/incubator-singa/blob/8cd55300/src/python/singa/tensor.py
----------------------------------------------------------------------
diff --git a/src/python/singa/tensor.py b/src/python/singa/tensor.py
index 6e84a4f..2e60554 100644
--- a/src/python/singa/tensor.py
+++ b/src/python/singa/tensor.py
@@ -16,23 +16,63 @@
 # under the License.
 # =============================================================================
 """
-This script includes Tensor class and its methods for python users
-to call singa::Tensor and its methods
+Example usage::
+
+    from singa import tensor
+    from singa import device
+
+    # create a tensor with shape (2,3), default CppCPU device and float32
+    x = tensor.Tensor((2,3))
+    x.set_value(0.4)
+
+    # create a tensor from a numpy array
+    y = tensor.from_numpy((3,3), dtype=np.float32)
+    y.uniform(-1, 1)
+
+    z = mult(x, y)  # gemm -> z of shape (2, 3)
+
+    x += z # element-wise addition
+
+    dev = device.create_cuda_gpu()
+    x.to_device(dev)  # move the data to a gpu device
+
+    r = relu(x)
+
+    r.to_host()  # move the data back to host cpu
+    s = r.to_numpy()  # tensor -> numpy array, r must be on cpu
+
+
+There are two set of tensor functions,
+
+Tensor member functions
+    which would change the internal state of the Tensor instance.
+Tensor module functions
+    which accept Tensor instances as arguments and return Tensor instances.
+
+Every Tesor instance must be initialized before reading data from it.
 """
 
 import numpy as np
+from functools import reduce
 from .proto import core_pb2
 from . import singa_wrap as singa
-from functools import reduce
+import device
 
 
 class Tensor(object):
-    ''' Class and member functions for singa::Tensor
+    '''Create a Py Tensor, which wraps a swig converted Tensor from CPP Tensor
+
+    The three arguments are three attributes of the Tensor.
+
+    Args:
+        shape (list<int>): a list of integers for the tensor shape. If shape is
+            not specified, the created tensor is called a dummy tensor.
+        device: a swig converted Device instance using the device moduel . If it
+            is None, then the default host device would be used.
+        dtype: data type. currently, most operations only accept kFloat32.
     '''
 
     def __init__(self, shape=None, device=None, dtype=core_pb2.kFloat32):
-        ''' shape = (tuple)
-        '''
         if shape is None:
             # call constructor of singa::Tensor
             self.singa_tensor = singa.Tensor()
@@ -48,125 +88,230 @@ class Tensor(object):
             self.device = device
             self.dtype = dtype
 
-    def copy_from_numpy(self, np_array, offset=0):
-        ''' this method stores the values of numpy array into tensor data
-            from the position of offset
-        '''
-        assert np_array.size == self.size(), 'tensor shape should be the same'
-        if not np_array.ndim == 1:
-            np_array = np_array.flatten()
-        dt = np_array.dtype
-        if dt == np.float32:
-            self.singa_tensor.floatCopyDataFromHostPtr(np_array)
-        elif dt == np.int or dt == np.int32:
-            self.singa_tensor.intCopyDataFromHostPtr(np_array)
-        else:
-            print 'Not implemented yet for ', dt
-
-    # deprecated, access the member data_type directly
-    def data_type(self):
-        return self.singa_tensor.data_type()
-
-    # deprecated, access the member shape directly
-    def shape(self, axis=None):
-        if axis is None:
-            return self.singa_tensor.shape()
-        else:
-            return self.singa_tensor.shape(axis)
-
     def ndim(self):
+        '''
+        Returns:
+            the number of dimensions of the tensor.
+        '''
         return self.singa_tensor.nDim()
 
-    def is_transpose(self):  # TODO(wangwei) make transpose a member
+    def is_transpose(self):
+        '''
+        Returns:
+            True if the internal data is transposed; otherwise False.
+        '''
         return self.singa_tensor.transpose()
 
     def size(self):  # TODO(wangwei) compute size
+        '''
+        Returns:
+            the number of elements of the tensor.
+        '''
         return self.singa_tensor.Size()
 
     def memsize(self):
+        '''
+        Returns:
+            the number of Bytes allocated for this tensor.
+        '''
         return self.singa_tensor.MemSize()
 
     def reshape(self, shape):
+        '''Change the tensor shape.
+
+        Args:
+            shape (list<int>): new shape, which should have the same volumn as
+                the original shape.
+        '''
         assert product(self.shape) == product(shape), \
-               'product of shape should be equal'
+            'product of shape should be equal'
         self.shape = shape
-        self.singa_tensor.Reshape(_tuple_to_vector(shape))
+        self.singa_tensor.Reshape(list(shape))
 
     def reset_like(self, t):
+        '''Reset the shape, dtype and device as the given tensor.
+
+        Args:
+            t (Tensor)
+        '''
         self.singa_tensor.ResetLike(t.singa_tensor)
 
+    '''
     def as_type(self, dtype):
+        Change the data type.
+
+        Args:
+            dtype:
         self.singa_tensor.AsType(dtype)
+    '''
 
     def to_device(self, device):
+        '''Move the tensor data onto a given device.
+
+        Args:
+            device: a swig Device converted from CudaGPU or CppCPU or OpenclGPU
+        '''
         self.singa_tensor.ToDevice(device)
 
     def to_host(self):
+        '''Move the tensor data onto the default host CppCPU device.
+        '''
         self.singa_tensor.ToHost()
 
     def l2(self):
+        '''
+        Returns:
+            the L2 norm.
+        '''
         return self.singa_tensor.L2()
 
     def l1(self):
+        '''
+        Returns:
+            the L1 norm.
+        '''
         return self.singa_tensor.L1()
 
     def set_value(self, x):
+        '''Set all elements of the tensor to be the give value.
+
+        Args:
+            x (float), a float value to be set to all elements.
+        '''
         # assert type(x) == float, 'set value only accepts float input'
         # if isinstance(x, float):
         self.singa_tensor.floatSetValue(x)
 
+    def copy_from_numpy(self, np_array, offset=0):
+        ''' Copy the data from the numpy array.
+
+        Args:
+            np_array: source numpy array
+            offset (int): destination offset
+        '''
+        assert np_array.size == self.size(), 'tensor shape should be the same'
+        if not np_array.ndim == 1:
+            np_array = np_array.flatten()
+        dt = np_array.dtype
+        if dt == np.float32:
+            self.singa_tensor.floatCopyDataFromHostPtr(np_array)
+        elif dt == np.int or dt == np.int32:
+            self.singa_tensor.intCopyDataFromHostPtr(np_array)
+        else:
+            print 'Not implemented yet for ', dt
+
     def copy_data(self, t):
+        '''Copy data from other Tensor instance.
+
+        Args:
+            t (Tensor): source Tensor.
+        '''
+        assert type(t) == Tensor, 't must be a singa Tensor instance'
         self.singa_tensor.CopyData(t.singa_tensor)
 
     def clone(self):
-        ''' it does deep copy
-            call singa::Tensor::Clone()
+        '''
+        Returns:
+            a new Tensor which does deep copy of this tensor
         '''
         return _call_singa_func(self.singa_tensor.Clone)
 
-    def transpose(self):
-        ''' shallow copy, negate the transpose field
-            call singa::Tensor::T()
+    def T(self):
+        ''' shallow copy, negate the transpose field.
+
+        Returns:
+            a new Tensor which shares the underlying data memory (shallow copy)
+            but is marked as a transposed version of this tensor.
         '''
         return _call_singa_func(self.singa_tensor.T)
 
+    '''
     def copy(self):
-        ''' shallow copy
+        shallow copy
             call copy constructor of singa::Tensor
-        '''
         return _call_singa_func(singa.Tensor, self.singa_tensor)
+    '''
 
     def deepcopy(self):
-        ''' deep copy
-            call singa::Tensor::Clone()
+        '''Same as clone().
+
+        Returns:
+            a new Tensor
         '''
         return self.clone()
 
     def bernoulli(self, p):
+        '''Sample 0/1 for each element according to the given probability.
+
+        Args:
+            p (float): with probability p, each element is sample to 1.
+        '''
         singa.floatBernoulli(float(p), self.singa_tensor)
 
     def gaussian(self, mean, std):
+        '''Generate a value for each element following a Gaussian distribution.
+
+        Args:
+            mean (float): mean of the distribution
+            std (float): standard variance of the distribution
+        '''
         singa.floatGaussian(float(mean), float(std), self.singa_tensor)
 
     def uniform(self, low, high):
+        '''Generate a value for each element following a uniform distribution.
+
+        Args:
+            low (float): the lower bound
+            high (float): the hight bound
+        '''
         singa.floatUniform(float(low), float(high), self.singa_tensor)
 
     def add_column(self, v):
+        '''Add a tensor to each column of this tensor.
+
+        Args:
+            v (Tensor): a Tensor to be added as a column to this tensor.
+        '''
         singa.AddColumn(v.singa_tensor, self.singa_tensor)
 
     def add_row(self, v):
+        '''Add a tensor to each row of this tensor.
+
+        Args:
+            v (Tensor): a Tensor to be added as a row to this tensor.
+        '''
         singa.AddRow(v.singa_tensor, self.singa_tensor)
 
     def div_column(self, v):
+        '''Divide each column of this tensor by v.
+
+        Args:
+            v (Tensor): 1d tensor of the same length the column of self.
+        '''
         singa.DivColumn(v.singa_tensor, self.singa_tensor)
 
     def div_row(self, v):
+        '''Divide each row of this tensor by v.
+
+        Args:
+            v (Tensor): 1d tensor of the same length the row of self.
+        '''
         singa.DivRow(v.singa_tensor, self.singa_tensor)
 
     def mult_column(self, v):
+        '''Multiply each column of this tensor by v element-wisely.
+
+        Args:
+            v (Tensor): 1d tensor of the same length the column of self.
+        '''
         singa.MultColumn(v.singa_tensor, self.singa_tensor)
 
     def mult_row(self, v):
+        '''Multiply each row of this tensor by v element-wisely.
+
+        Args:
+            v (Tensor): 1d tensor of the same length the row of self.
+        '''
         singa.MultRow(v.singa_tensor, self.singa_tensor)
 
     '''
@@ -174,6 +319,11 @@ class Tensor(object):
     '''
 
     def __iadd__(self, x):
+        ''' inplace element-wise addition with a tensor or a float value.
+
+        Args:
+            x (float or Tensor):
+        '''
         if isinstance(x, Tensor):
             self.singa_tensor += x.singa_tensor
         else:
@@ -181,6 +331,12 @@ class Tensor(object):
         return self
 
     def __isub__(self, x):
+        ''' inplace element-wise subtraction with a tensor or a float value.
+
+        Args:
+            x (float or Tensor):
+        '''
+
         if isinstance(x, Tensor):
             self.singa_tensor -= x.singa_tensor
         else:
@@ -188,6 +344,11 @@ class Tensor(object):
         return self
 
     def __imul__(self, x):
+        ''' inplace element-wise multiplication with a tensor or a float value.
+
+        Args:
+            x (float or Tensor):
+        '''
         if isinstance(x, Tensor):
             self.singa_tensor *= x.singa_tensor
         else:
@@ -195,6 +356,11 @@ class Tensor(object):
         return self
 
     def __idiv__(self, x):
+        ''' inplace element-wise division by a tensor or a float value.
+
+        Args:
+            x (float or Tensor):
+        '''
         if isinstance(x, Tensor):
             self.singa_tensor /= x.singa_tensor
         else:
@@ -272,29 +438,72 @@ def product(shape):
 
 
 def sizeof(dtype):
+    '''
+    Returns:
+        the number of bytes of the given SINGA data type defined in core.proto
+    '''
     return singa.SizeOf(dtype)
 
 
 def reshape(t, s):
+    '''Reshape the input tensor with the given shape.
+
+    Args:
+        t (Tensor): the tensor to be changed
+        s (list<int>): the new shape, which should have the same volumn as the
+            old shape.
+
+    Returns:
+        the new Tensor
+    '''
     return _call_singa_func(singa.Reshape, t.singa_tensor, s)
 
 
 def copy_data_to_from(dst, src, size, dst_offset=0, src_offset=0):
+    '''Copy the data between two Tensor instances which could be on different
+    devices.
+
+    Args:
+        dst (Tensor): destination Tensor
+        src (Tensor): source Tensor
+        size (int) : number of elements to copy
+        dst_offset (int): offset in terms of elements to the start of dst
+        src_offset (int): offset in terms of elements to the start of src
+    '''
     singa.CopyDataToFrom(dst.singa_tensor, src.singa_tensor, size,
                          dst_offset, src_offset)
 
 
 def from_numpy(np_array):
+    '''Create a Tensor instance with the shape, dtype and values from the numpy
+    array.
+
+    Args:
+        np_array: the numpy array.
+
+    Returns:
+        A Tensor instance allocated on the default CppCPU device.
+    '''
     ret = Tensor(np_array.shape)
     ret.copy_from_numpy(np_array)
     return ret
 
 
 def to_numpy(t):
-    ''' this method gets the values of tensor data and
-        returns it as numpy array
-        TODO(wangwei) clone t to host
+    '''Convert the tensor into a numpy array.
+
+    Since numpy array is allocated on CPU devices, the input Tensor instance
+    must be on the default CppCPU device.
+
+    Args:
+        t (Tensor), a Tensor on the default CppCPU device.
+
+    Returns:
+        a numpy array
     '''
+    assert t.device == device.get_default_device() or t.device is None, \
+        'Please move the tensor onto the default host device'
+
     if t.dtype == core_pb2.kFloat32:
         np_array = t.singa_tensor.floatGetValue(int(t.size()))
     elif t.dtype == core_pb2.kInt:
@@ -305,34 +514,96 @@ def to_numpy(t):
 
 
 def abs(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = abs(x), x is an element of t
+    '''
     return _call_singa_func(singa.Abs, t.singa_tensor)
 
 
 def exp(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = exp(x), x is an element of t
+    '''
     return _call_singa_func(singa.Exp, t.singa_tensor)
 
 
 def log(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = log(x), x is an element of t
+    '''
     return _call_singa_func(singa.Log, t.singa_tensor)
 
 
 def relu(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = x if x >0; otherwise 0; x is an element
+        of t
+    '''
     return _call_singa_func(singa.ReLU, t.singa_tensor)
 
 
 def sigmoid(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = sigmoid(x); x is an element of t
+    '''
     return _call_singa_func(singa.Sigmoid, t.singa_tensor)
 
 
 def square(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = x * x, x is an element of t
+    '''
     return _call_singa_func(singa.Square, t.singa_tensor)
 
 
 def tanh(t):
+    '''
+    Args:
+        t (Tensor): input Tensor
+
+    Returns:
+        a new Tensor whose element y = tanh(x), x is an element of t
+    '''
     return _call_singa_func(singa.Tanh, t.singa_tensor)
 
 
 def sum(t, axis=None):
+    '''Sum elements of the input tensor long the given axis.
+
+    Args:
+        t (Tensor): input Tensor
+        axis (int, optional): if None, the summation is done over all elements;
+            if axis is provided, then it is calculated along the given axis,
+            e.g. 0 -- sum each column; 1 -- sum each row.
+
+    Returns:
+        a float value as the sum of all elements, or a new Tensor
+    '''
+
     if axis is None:
         return singa.floatSum(t.singa_tensor)
     else:
@@ -340,6 +611,17 @@ def sum(t, axis=None):
 
 
 def pow(t, x, out=None):
+    '''
+    Args:
+        t (Tensor): input tensor
+        x (float or Tensor): y[i] = t[i]^x if x is a float value; otherwise,
+            y[i]= t[i]^x[i] if x is a tensor.
+        out (None or Tensor): if None, a new Tensor would be constructed to
+            store the result; otherwise, the result is put into out.
+
+    Returns:
+        the result tensor.
+    '''
     if out is None:
         if isinstance(x, Tensor):
             return _call_singa_func(singa.Pow, t.singa_tensor, x.singa_tensor)
@@ -353,7 +635,17 @@ def pow(t, x, out=None):
         return out
 
 
-def average(t, axis=0):
+def average(t, axis=None):
+    '''
+    Args:
+        t (Tensor): input Tensor
+        axis (int, optional): if None, average all elements; otherwise average
+            along the given dimension. 0 for averaging each column; 1 for
+            averaging each row.
+
+    Returns:
+        a float value if axis is None; otherwise, a new Tensor for the result.
+    '''
     if t.ndim() > 1:
         return _call_singa_func(singa.Average, t.singa_tensor, axis)
     else:
@@ -361,6 +653,15 @@ def average(t, axis=0):
 
 
 def softmax(t, out=None):
+    '''Apply SoftMax for each row of the Tensor.
+
+    Args:
+        t (Tensor): the input 1d or 2d tensor
+        out (Tensor, optional): if not None, it is used to store the result
+
+    Returns:
+        the result Tensor
+    '''
     if out is None:
         return _call_singa_func(singa.SoftMax, t.singa_tensor)
     else:
@@ -369,22 +670,73 @@ def softmax(t, out=None):
 
 
 def lt(t, x):
+    '''Elementi-wise comparison for t < x
+
+    Args:
+        t (Tensor): left hand side operand
+        x (Tensor or float): right hand side operand
+
+    Returns:
+        a Tensor with each element being t[i] < x ? 1.0f:0.0f,
+        or t[i] < x[i] ? 1.0f:0.0f
+    '''
     return t < x
 
 
 def le(t, x):
+    '''Elementi-wise comparison for t <= x.
+
+    Args:
+        t (Tensor): left hand side operand
+        x (Tensor or float): right hand side operand
+
+    Returns:
+        a Tensor with each element being t[i] <= x ? 1.0f:0.0f,
+        or t[i] <= x[i] ? 1.0f:0.0f
+    '''
     return t <= x
 
 
 def gt(t, x):
+    '''Elementi-wise comparison for t > x.
+
+    Args:
+        t (Tensor): left hand side operand
+        x (Tensor or float): right hand side operand
+
+    Returns:
+        a Tensor with each element being t[i] > x ? 1.0f:0.0f,
+        or t[i] > x[i] ? 1.0f:0.0f
+    '''
     return t > x
 
 
 def ge(t, x):
+    '''Elementi-wise comparison for t >= x.
+
+    Args:
+        t (Tensor): left hand side operand
+        x (Tensor or float): right hand side operand
+
+    Returns:
+        a Tensor with each element being t[i] >= x ? 1.0f:0.0f,
+        or t[i] >= x[i] ? 1.0f:0.0f
+    '''
     return t >= x
 
 
 def add(lhs, rhs, ret=None):
+    '''Elementi-wise addition.
+
+    Args:
+        lhs (Tensor)
+        rhs (Tensor)
+        ret (Tensor, optional): if not None, the result is stored in it;
+            otherwise, a new Tensor would be created for the result.
+
+    Returns:
+        the result Tensor
+    '''
     if ret is None:
         # call Tensor.__add__()
         return lhs + rhs
@@ -397,6 +749,17 @@ def add(lhs, rhs, ret=None):
 
 
 def sub(lhs, rhs, ret=None):
+    '''Elementi-wise subtraction.
+
+    Args:
+        lhs (Tensor)
+        rhs (Tensor)
+        ret (Tensor, optional): if not None, the result is stored in it;
+            otherwise, a new Tensor would be created for the result.
+
+    Returns:
+        the result Tensor
+    '''
     if ret is None:
         # call Tensor.__sub__()
         return lhs - rhs
@@ -409,6 +772,18 @@ def sub(lhs, rhs, ret=None):
 
 
 def eltwise_mult(lhs, rhs, ret=None):
+    '''Elementi-wise multiplication.
+
+    Args:
+        lhs (Tensor)
+        rhs (Tensor)
+        ret (Tensor, optional): if not None, the result is stored in it;
+            otherwise, a new Tensor would be created for the result.
+
+    Returns:
+        the result Tensor
+    '''
+
     if ret is None:
         # call Tensor.__mul__()
         return lhs * rhs
@@ -423,8 +798,21 @@ def eltwise_mult(lhs, rhs, ret=None):
 
 
 def mult(A, B, C=None, alpha=1.0, beta=0.0):
-    '''
+    '''Do matrix-matrix or matrix-vector multiplication.
+
     This function returns C = alpha * A * B + beta * C
+
+    Args:
+        A (Tensor): 2d Tensor
+        B (Tensor): If B is a 1d Tensor, GEMV would be invoked for matrix-vector
+            multiplication; otherwise GEMM would be invoked.
+        C (Tensor, optional): for storing the result; If None, a new Tensor
+            would be created.
+        alpha (float)
+        beta (float)
+
+    Returns:
+        the result Tensor
     '''
     if C is None:
         return _call_singa_func(singa.Mult, A.singa_tensor, B.singa_tensor)
@@ -435,6 +823,17 @@ def mult(A, B, C=None, alpha=1.0, beta=0.0):
 
 
 def div(lhs, rhs, ret=None):
+    '''Elementi-wise division.
+
+    Args:
+        lhs (Tensor)
+        rhs (Tensor)
+        ret (Tensor, optional): if not None, the result is stored in it;
+            otherwise, a new Tensor would be created for the result.
+
+    Returns:
+        the result Tensor
+    '''
     if ret is None:
         # call Tensor.__div__()
         return lhs / rhs
@@ -447,51 +846,125 @@ def div(lhs, rhs, ret=None):
 
 
 def axpy(alpha, x, y):
-    if isinstance(alpha, float):
-        singa.floatAxpy(alpha, x.singa_tensor, y.singa_tensor)
+    '''Element-wise operation for y += alpha * x.
+
+    Args:
+        alpha (float)
+        x (Tensor)
+        y (Tensor)
+
+    Returns:
+        y
+    '''
+    singa.floatAxpy(float(alpha), x.singa_tensor, y.singa_tensor)
     return y
 
 
 def bernoulli(p, t):
-    if isinstance(p, float):
-        singa.floatBernoulli(p, t.singa_tensor)
+    '''Generate a binary value for each element of t.
+
+    Args:
+        p (float): each element is 1 with probability p; and 0 with 1 - p
+        t (Tensor): the results are put into t
+
+    Returns:
+        t
+    '''
+    singa.floatBernoulli(float(p), t.singa_tensor)
     return t
 
 
 def gaussian(mean, std, t):
-    if isinstance(mean, float):
-        singa.floatGaussian(mean, std, t.singa_tensor)
+    '''Generate values following a Gaussian distribution.
+
+    Args:
+        mean (float): the mean of the Gaussian distribution.
+        std (float): the standard variance of the Gaussian distribution.
+        t (Tensor): the results are put into t
+
+    Returns:
+        t
+    '''
+    singa.floatGaussian(float(mean), float(std), t.singa_tensor)
     return t
 
 
 def uniform(low, high, t):
-    if isinstance(low, float):
-        singa.floatUniform(low, high, t.singa_tensor)
+    '''Generate values following a Uniform distribution.
+
+    Args:
+        low (float): the lower bound
+        hight (float): the higher bound
+        t (Tensor): the results are put into t
+
+    Returns:
+        t
+    '''
+    singa.floatUniform(float(low), float(high), t.singa_tensor)
     return t
 
 
 def add_column(alpha, v, beta, M):
-    singa.floatAddColumn(alpha, beta, v.singa_tensor, M.singa_tensor)
+    '''Add v to each column of M.
+
+    Denote each column of M as m, m = alpha * v + beta * m
+
+    Args:
+        alpha (float)
+        v (Tensor)
+        beta (float)
+        M (Tensor): 2d tensor
+    Returns:
+        M
+    '''
+    singa.floatAddColumn(float(alpha), float(beta), v.singa_tensor,
+                         M.singa_tensor)
     return M
 
 
 def add_row(alpha, v, beta, M):
+    '''Add v to each row of M.
+
+    Denote each row of M as m, m = alpha * v + beta * m
+
+    Args:
+        alpha (float)
+        v (Tensor)
+        beta (float)
+        M (Tensor): 2d tensor
+    Returns:
+        M
+    '''
     singa.floatAddRow(alpha, beta, v.singa_tensor, M.singa_tensor)
     return M
 
 
 def sum_columns(M):
+    '''Sum all columns into a single column.
+
+    Args:
+        M (Tensor): the input 2d tensor.
+
+    Returns:
+        a new Tensor as the resulted column.
+    '''
     assert M.ndim() == 2, 'M.nDim() is supposed to be 2'
-    nb_col = M.shape(0)
-    ret = Tensor((nb_col, 1))
+    ret = Tensor((M.shape[0], 1))
     singa.SumColumns(M.singa_tensor, ret.singa_tensor)
     return ret
 
 
 def sum_rows(M):
+    '''Sum all rows into a single row.
+
+    Args:
+        M (Tensor): the input 2d tensor.
+
+    Returns:
+        a new Tensor as the resulted row.
+    '''
     assert M.ndim() == 2, 'M.nDim() is supposed to be 2'
-    nb_row = M.shape(1)
-    ret = Tensor((1, nb_row))
+    ret = Tensor((1, M.shape[1]))
     singa.SumRows(M.singa_tensor, ret.singa_tensor)
     return ret
 
@@ -500,15 +973,6 @@ def sum_rows(M):
 '''
 
 
-def _tuple_to_vector(tshape):
-    ''' this function converts tuple to std::vector<int>
-    '''
-    vs = singa.Shape(len(tshape))
-    for i in range(len(tshape)):
-        vs[i] = tshape[i]
-    return vs
-
-
 def _call_singa_func(_singa_func, *args):
     ''' this function calls singa global functions that returns Tensor
         and create new python Tensor instance
@@ -516,7 +980,7 @@ def _call_singa_func(_singa_func, *args):
     '''
     new_t = Tensor()
     new_t.singa_tensor = _singa_func(*args)
-    new_t.shape = new_t.singa_tensor.shape()
+    new_t.shape = tuple(new_t.singa_tensor.shape())
     new_t.device = new_t.singa_tensor.device()
     new_t.dtype = new_t.singa_tensor.data_type()
     return new_t


Mime
View raw message