singa-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From build...@apache.org
Subject svn commit: r965910 [3/3] - in /websites/staging/singa/trunk/content: ./ community/ develop/ docs/
Date Fri, 18 Sep 2015 15:11:55 GMT
Modified: websites/staging/singa/trunk/content/docs/rnn.html
==============================================================================
--- websites/staging/singa/trunk/content/docs/rnn.html (original)
+++ websites/staging/singa/trunk/content/docs/rnn.html Fri Sep 18 15:11:53 2015
@@ -1,15 +1,15 @@
 <!DOCTYPE html>
 <!--
- | Generated by Apache Maven Doxia at 2015-09-14 
+ | Generated by Apache Maven Doxia at 2015-09-18 
  | Rendered using Apache Maven Fluido Skin 1.4
 -->
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
-    <meta name="Date-Revision-yyyymmdd" content="20150914" />
+    <meta name="Date-Revision-yyyymmdd" content="20150918" />
     <meta http-equiv="Content-Language" content="en" />
-    <title>Apache SINGA &#x2013; RNN Example</title>
+    <title>Apache SINGA &#x2013; </title>
     <link rel="stylesheet" href="../css/apache-maven-fluido-1.4.min.css" />
     <link rel="stylesheet" href="../css/site.css" />
     <link rel="stylesheet" href="../css/print.css" media="print" />
@@ -20,7 +20,13 @@
   
     <script type="text/javascript" src="../js/apache-maven-fluido-1.4.min.js"></script>
 
-    
+                          
+        
+<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+                      
+        
+<script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script>
+          
                   </head>
         <body class="topBarEnabled">
           
@@ -204,7 +210,7 @@
         Apache SINGA</a>
                     <span class="divider">/</span>
       </li>
-        <li class="active ">RNN Example</li>
+        <li class="active "></li>
         
                 
                     
@@ -482,115 +488,97 @@
                         
         <div id="bodyColumn"  class="span10" >
                                   
-            <h1>RNN Example</h1>
-<p>Recurrent Neural Networks (RNN) are widely used for modeling sequential data, such as music, videos and sentences. In this example, we use SINGA to train a <a class="externalLink" href="http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf">RNN model</a> proposed by Tomas Mikolov for <a class="externalLink" href="https://en.wikipedia.org/wiki/Language_model">language modeling</a>. The training objective (loss) is minimize the <a class="externalLink" href="https://en.wikipedia.org/wiki/Perplexity">perplexity per word</a>, which is equivalent to maximize the probability of predicting the next word given the current word in a sentence.</p>
-<p>Different to the <a class="externalLink" href="http://singa.incubator.apache.org/docs/cnn">CNN</a>, <a class="externalLink" href="http://singa.incubator.apache.org/docs/mlp">MLP</a> and <a class="externalLink" href="http://singa.incubator.apache.org/docs/rbm">RBM</a> examples which use built-in <a class="externalLink" href="http://singa.incubator.apache.org/docs/layer">Layer</a>s and <a class="externalLink" href="http://singa.incubator.apache.org/docs/data">Record</a>s, none of the layers in this model is built-in. Hence users can get examples of implementing their own Layers and data Records in this page.</p>
+            <p>Recurrent Neural Networks for Language Modelling</p>
+<hr />
+<p>Recurrent Neural Networks (RNN) are widely used for modelling sequential data, such as music and sentences. In this example, we use SINGA to train a <a class="externalLink" href="http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf">RNN model</a> proposed by Tomas Mikolov for <a class="externalLink" href="https://en.wikipedia.org/wiki/Language_model">language modeling</a>. The training objective (loss) is to minimize the <a class="externalLink" href="https://en.wikipedia.org/wiki/Perplexity">perplexity per word</a>, which is equivalent to maximize the probability of predicting the next word given the current word in a sentence.</p>
+<p>Different to the <a href="cnn.html">CNN</a>, <a href="mlp.html">MLP</a> and <a href="rbm.html">RBM</a> examples which use built-in layers(layer) and records(data), none of the layers in this example are built-in. Hence users would learn to implement their own layers and data records through this example.</p>
 <div class="section">
 <h2><a name="Running_instructions"></a>Running instructions</h2>
-<p>In <i>SINGA_ROOT/examples/rnn/</i>, scripts are provided to run the training job. First, the data is prepared by</p>
+<p>In <i>SINGA_ROOT/examples/rnnlm/</i>, scripts are provided to run the training job. First, the data is prepared by</p>
 
 <div class="source">
 <div class="source"><pre class="prettyprint">$ cp Makefile.example Makefile
 $ make download
 $ make create
 </pre></div></div>
-<p>Second, the training is started by passing the job configuration as,</p>
+<p>Second, to compile the source code under <i>examples/rnnlm/</i>, run</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint"># in SINGA_ROOT
-$ ./bin/singa-run.sh -conf SINGA_ROOT/examples/rnn/job.conf
+<div class="source"><pre class="prettyprint">$ make rnnlm
+</pre></div></div>
+<p>An executable file <i>rnnlm.bin</i> will be generated.</p>
+<p>Third, the training is started by passing <i>rnnlm.bin</i> and the job configuration to <i>singa-run.sh</i>,</p>
+
+<div class="source">
+<div class="source"><pre class="prettyprint"># at SINGA_ROOT/
+# export LD_LIBRARY_PATH=.libs:$LD_LIBRARY_PATH
+$ ./bin/singa-run.sh -exec examples/rnnlm/rnnlm.bin -conf examples/rnnlm/job.conf
 </pre></div></div></div>
 <div class="section">
 <h2><a name="Implementations"></a>Implementations</h2>
-<p><img src="http://singa.incubator.apache.org/images/rnn-refine.png" align="center" width="300px" alt="" /> <span><b>Figure 1 - Net structure of the RNN model.</b></span></p>
-<p>The neural net structure is shown Figure 1. Word records are loaded by <tt>RnnlmDataLayer</tt> from <tt>WordShard</tt>. <tt>RnnlmWordparserLayer</tt> parses word records to get word indexes (in the vocabulary). For every iteration, <tt>window_size</tt> words are processed. <tt>RnnlmWordinputLayer</tt> looks up a word embedding matrix to extract feature vectors for words in the window. These features are transformed by <tt>RnnlmInnerproductLayer</tt> layer and <tt>RnnlmSigmoidLayer</tt>. <tt>RnnlmSigmoidLayer</tt> is a recurrent layer that forwards features from previous words to next words. Finally, <tt>RnnlmComputationLayer</tt> computes the perplexity loss with word class information from <tt>RnnlmClassparserLayer</tt>. The word class is a cluster ID. Words are clustered based on their frequency in the dataset, e.g., frequent words are clustered together and less frequent words are clustered together. Clustering is to improve the efficiency of the final prediction process.</p>
+<p><img src="../images/rnnlm.png" align="center" width="400px" alt="" /> <span><b>Figure 1 - Net structure of the RNN model.</b></span></p>
+<p>The neural net structure is shown Figure 1. Word records are loaded by <tt>DataLayer</tt>. For every iteration, at most <tt>max_window</tt> word records are processed. If a sentence ending character is read, the <tt>DataLayer</tt> stops loading immediately. <tt>EmbeddingLayer</tt> looks up a word embedding matrix to extract feature vectors for words loaded by the <tt>DataLayer</tt>. These features are transformed by the <tt>HiddenLayer</tt> which propagates the features from left to right. The output feature for word at position k is influenced by words from position 0 to k-1. Finally, <tt>LossLayer</tt> computes the cross-entropy loss (see below) by predicting the next word of each word. <tt>LabelLayer</tt> reads the same number of word records as the embedding layer but starts from position 1. Consequently, the word record at position k in <tt>LabelLayer</tt> is the ground truth for the word at position k in <tt>LossLayer</tt>.</p>
+<p>The cross-entropy loss is computed as</p>
+<p><tt>$$L(w_t)=-log P(w_{t+1}|w_t)$$</tt></p>
+<p>Given <tt>$w_t$</tt> the above equation would compute over all words in the vocabulary, which is time consuming. <a class="externalLink" href="https://f25ea9ccb7d3346ce6891573d543960492b92c30.googledrive.com/host/0ByxdPXuxLPS5RFM5dVNvWVhTd0U/rnnlm-0.4b.tgz">RNNLM Toolkit</a> accelerates the computation as</p>
+<p><tt>$$P(w_{t+1}|w_t) = P(C_{w_{t+1}}|w_t) * P(w_{t+1}|C_{w_{t+1}})$$</tt></p>
+<p>Words from the vocabulary are partitioned into a user-defined number of classes. The first term on the left side predicts the class of the next word, and then predicts the next word given its class. Both the number of classes and the words from one class are much smaller than the vocabulary size. The probabilities can be calculated much faster.</p>
+<p>The perplexity per word is computed by,</p>
+<p><tt>$$PPL = 10^{- avg_t log_{10} P(w_{t+1}|w_t)}$$</tt></p>
 <div class="section">
 <h3><a name="Data_preparation"></a>Data preparation</h3>
-<p>We use a small dataset in this example. In this dataset, [dataset description, e.g., format]. The subsequent steps follow the instructions in <a class="externalLink" href="http://singa.incubator.apache.org/docs/data">Data Preparation</a> to convert the raw data into <tt>Record</tt>s and insert them into <tt>DataShard</tt>s.</p>
+<p>We use a small dataset provided by the <a class="externalLink" href="https://f25ea9ccb7d3346ce6891573d543960492b92c30.googledrive.com/host/0ByxdPXuxLPS5RFM5dVNvWVhTd0U/rnnlm-0.4b.tgz">RNNLM Toolkit</a>. It has 10,000 training sentences, with 71350 words in total and 3720 unique words. The subsequent steps follow the instructions in <a href="data.html">Data Preparation</a> to convert the raw data into records and insert them into <tt>DataShard</tt>s.</p>
 <div class="section">
 <h4><a name="Download_source_data"></a>Download source data</h4>
 
 <div class="source">
-<div class="source"><pre class="prettyprint"># in SINGA_ROOT/examples/rnn/
-wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
-xxx
+<div class="source"><pre class="prettyprint"># in SINGA_ROOT/examples/rnnlm/
+cp Makefile.example Makefile
+make download
 </pre></div></div></div>
 <div class="section">
-<h4><a name="Define_your_own_record."></a>Define your own record.</h4>
-<p>Since this dataset has different format as the built-in <tt>SingleLabelImageRecord</tt>, we need to extend the base <tt>Record</tt> to add new fields,</p>
+<h4><a name="Define_your_own_record"></a>Define your own record</h4>
+<p>We define the word record as follows,</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint"># in SINGA_ROOT/examples/rnn/user.proto
-package singa;
-
-import &quot;common.proto&quot;;  // import SINGA Record
-
-extend Record {  // extend base Record to include users' records
-    optional WordClassRecord wordclass = 101;
-    optional SingleWordRecord singleword = 102;
-}
-
-message WordClassRecord {
-    optional int32 class_index = 1; // the index of this class
-    optional int32 start = 2; // the index of the start word in this class;
-    optional int32 end = 3; // the index of the end word in this class
+<div class="source"><pre class="prettyprint"># in SINGA_ROOT/examples/rnnlm/rnnlm.proto
+message WordRecord {
+  optional string word = 1;
+  optional int32 word_index = 2;
+  optional int32 class_index = 3;
+  optional int32 class_start = 4;
+  optional int32 class_end = 5;
 }
 
-message SingleWordRecord {
-    optional string word = 1;
-    optional int32 word_index = 2;   // the index of this word in the vocabulary
-    optional int32 class_index = 3;   // the index of the class corresponding to this word
+extend singa.Record {
+  optional WordRecord word = 101;
 }
-</pre></div></div></div>
-<div class="section">
-<h4><a name="Create_data_shard_for_training_and_testing"></a>Create data shard for training and testing</h4>
-<p>{% comment %} As the vocabulary size is very large, the original perplexity calculation method is time consuming. Because it has to calculate the probabilities of all possible words for</p>
-
-<div class="source">
-<div class="source"><pre class="prettyprint">p(wt|w0, w1, ... wt-1).
 </pre></div></div>
-<p>Tomas proposed to divide all words into different classes according to the word frequency, and compute the perplexity according to</p>
+<p>It includes the word string and its index in the vocabulary. Words in the vocabulary are sorted based on their frequency in the training dataset. The sorted list is cut into 100 sublists such that each sublist has 1/100 total word frequency. Each sublist is called a class. Hence each word has a <tt>class_index</tt> ([0,100)). The <tt>class_start</tt> is the index of the first word in the same class as <tt>word</tt>. The <tt>class_end</tt> is the index of the first word in the next class.</p></div>
+<div class="section">
+<h4><a name="Create_DataShards"></a>Create DataShards</h4>
+<p>We use code from RNNLM Toolkit to read words, and sort them into classes. The main function in <i>create_shard.cc</i> first creates word classes based on the training dataset. Second it calls the following function to create data shards for the training, validation and test dataset.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">p(wt|w0, w1, ... wt-1) = p(c|w0,w1,..wt-1) p(w|c)
+<div class="source"><pre class="prettyprint">int create_shard(const char *input_file, const char *output_file);
 </pre></div></div>
-<p>where <tt>c</tt> is the word class, <tt>w0, w1...wt-1</tt> are the previous words before <tt>wt</tt>. The probabilities on the right side can be computed faster than</p>
-<p><a class="externalLink" href="https://github.com/kaiping/incubator-singa/blob/rnnlm/examples/rnnlm/Makefile">Makefile</a> for creating the shards (see in  <a class="externalLink" href="https://github.com/kaiping/incubator-singa/blob/rnnlm/examples/rnnlm/create_shard.cc">create_shard.cc</a>),  we need to specify where to download the source data, number of classes we  want to divide all occurring words into, and all the shards together with  their names, directories we want to create. {% endcomment %}</p>
-<p><i>SINGA_ROOT/examples/rnn/create_shard.cc</i> defines the following function for creating data shards,</p>
+<p><tt>input</tt> is the path to training/validation/testing text file from the RNNLM Toolkit, <tt>output</tt> is output shard folder. This function starts with</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void create_shard(const char *input, int nclass) {
+<div class="source"><pre class="prettyprint">DataShard dataShard(output, DataShard::kCreate);
 </pre></div></div>
-<p><tt>input</tt> is the path to [the text file], <tt>nclass</tt> is user specified cluster size. This function starts with</p>
+<p>Then it reads the words one by one. For each word it creates a <tt>WordRecord</tt> instance, and inserts it into the <tt>dataShard</tt>.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">  using StrIntMap = std::map&lt;std::string, int&gt;;
-  StrIntMap *wordIdxMapPtr; //  Mapping word string to a word index
-  StrIntMap *wordClassIdxMapPtr;    // Mapping word string to a word class index
-  if (-1 == nclass) {
-      loadClusterForNonTrainMode(input, nclass, &amp;wordIdxMap, &amp;wordClassIdxMap); // non-training phase
-  } else {
-      doClusterForTrainMode(input, nclass, &amp;wordIdxMap, &amp;wordClassIdxMap); // training phase
-  }
-</pre></div></div>
-
-<ul>
-  
-<li>If <tt>-1 == nclass</tt>, <tt>path</tt> points to the training data file. <tt>doClusterForTrainMode</tt>  reads all the words in the file to create the two maps. [The two maps are stored in xxx]</li>
-  
-<li>otherwise, <tt>path</tt> points to either test or validation data file. <tt>loadClusterForNonTrainMode</tt>  loads the two maps from [xxx].</li>
-</ul>
-<p>Words from training/text/validation files are converted into <tt>Record</tt>s by</p>
-
-<div class="source">
-<div class="source"><pre class="prettyprint">  singa::SingleWordRecord *wordRecord = record.MutableExtension(singa::singleword);
-  while (in &gt;&gt; word) {
-    wordRecord-&gt;set_word(word);
-    wordRecord-&gt;set_word_index(wordIdxMap[word]);
-    wordRecord-&gt;set_class_index(wordClassIdxMap[word]);
-    snprintf(key, kMaxKeyLength, &quot;%08d&quot;, wordIdxMap[word]);
-    wordShard.Insert(std::string(key), record);
-  }
+<div class="source"><pre class="prettyprint">int wcnt = 0; // word count
+singa.Record record;
+WordRecord* wordRecord = record.MutableExtension(word);
+while(1) {
+  readWord(wordstr, fin);
+  if (feof(fin)) break;
+  ...// fill in the wordRecord;
+  int length = snprintf(key, BUFFER_LEN, &quot;%05d&quot;, wcnt++);
+  dataShard.Insert(string(key, length), record);
 }
 </pre></div></div>
 <p>Compilation and running commands are provided in the <i>Makefile.example</i>. After executing</p>
@@ -598,306 +586,261 @@ message SingleWordRecord {
 <div class="source">
 <div class="source"><pre class="prettyprint">make create
 </pre></div></div>
-<p>, three data shards will created using the <tt>create_shard.cc</tt>, namely, <i>rnnlm_word_shard_train</i>, <i>rnnlm_word_shard_test</i> and <i>rnnlm_word_shard_valid</i>.</p></div></div>
+<p>, three data shards will created, namely, <i>train_shard</i>, <i>test_shard</i> and <i>valid_shard</i>.</p></div></div>
 <div class="section">
 <h3><a name="Layer_implementation"></a>Layer implementation</h3>
-<p>7 layers (i.e., Layer subclasses) are implemented for this application, including 1 <a class="externalLink" href="http://singa.incubator.apache.org/docs/layer#data-layers">data layer</a> which fetches data records from data shards, 2 <a class="externalLink" href="http://singa.incubator.apache.org/docs/layer#parser-layers">parser layers</a> which parses the input records, 3 neuron layers which transforms the word features and 1 loss layer which computes the objective loss.</p>
-<p>First, we illustrate the data shard and how to create it for this application. Then, we discuss the configuration and functionality of layers. Finally, we introduce how to configure a job and then run the training for your own model.</p>
-<p>Following the guide for implementing <a class="externalLink" href="http://singa.incubator.apache.org/docs/layer#implementing-a-new-layer-subclass">new Layer subclasses</a>, we extend the <a class="externalLink" href="http://singa.incubator.apache.org/api/classsinga_1_1LayerProto.html">LayerProto</a> to include the configuration message of each user-defined layer as shown below (5 out of the 7 layers have specific configurations),</p>
+<p>6 user-defined layers are implemented for this application. Following the guide for implementing <a href="layer#implementing-a-new-layer-subclass">new Layer subclasses</a>, we extend the <a href="../api/classsinga_1_1LayerProto.html">LayerProto</a> to include the configuration messages of user-defined layers as shown below (3 out of the 7 layers have specific configurations),</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">package singa;
-
-import &quot;common.proto&quot;;  // Record message for SINGA is defined
-import &quot;job.proto&quot;;     // Layer message for SINGA is defined
+<div class="source"><pre class="prettyprint">import &quot;job.proto&quot;;     // Layer message for SINGA is defined
 
 //For implementation of RNNLM application
-extend LayerProto {
-    optional RnnlmComputationProto rnnlmcomputation_conf = 201;
-    optional RnnlmSigmoidProto rnnlmsigmoid_conf = 202;
-    optional RnnlmInnerproductProto rnnlminnerproduct_conf = 203;
-    optional RnnlmWordinputProto rnnlmwordinput_conf = 204;
-    optional RnnlmDataProto rnnlmdata_conf = 207;
+extend singa.LayerProto {
+  optional EmbeddingProto embedding_conf = 101;
+  optional LossProto loss_conf = 102;
+  optional InputProto input_conf = 103;
 }
 </pre></div></div>
-<p>In the subsequent sections, we describe the implementation of each layer, including it configuration message.</p></div>
-<div class="section">
-<h3><a name="RnnlmDataLayer"></a>RnnlmDataLayer</h3>
-<p>It inherits <a href="/api/classsinga_1_1DataLayer.html">DataLayer</a> for loading word and class <tt>Record</tt>s from <tt>DataShard</tt>s into memory.</p>
+<p>In the subsequent sections, we describe the implementation of each layer, including its configuration message.</p>
 <div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
+<h4><a name="RNNLayer"></a>RNNLayer</h4>
+<p>This is the base layer of all other layers for this applications. It is defined as follows,</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmDataLayer::Setup() {
-  read records from ClassShard to construct mapping from word string to class index
-  Resize length of records_ as window_size + 1
-  Read 1st word record to the last position
-}
-
-
-void RnnlmDataLayer::ComputeFeature() {
-    records_[0] = records_[windowsize_];    //Copy the last record to 1st position in the record vector
-  Assign values to records_;    //Read window_size new word records from WordShard
-}
+<div class="source"><pre class="prettyprint">class RNNLayer : virtual public Layer {
+public:
+  inline int window() { return window_; }
+protected:
+  int window_;
+};
 </pre></div></div>
-<p>The <tt>Steup</tt> function load the mapping (from word string to class index) from <i>ClassShard</i>.</p>
-<p>Every time the <tt>ComputeFeature</tt> function is called, it loads <tt>windowsize_</tt> records from <tt>WordShard</tt>.</p>
-<p>[For the consistency of operations at each training iteration, it maintains a record vector (length of window_size + 1). It reads the 1st record from the WordShard and puts it in the last position of record vector].</p></div>
+<p>For this application, two iterations may process different number of words. Because sentences have different lengths. The <tt>DataLayer</tt> decides the effective window size. All other layers call its source layers to get the effective window size and resets <tt>window_</tt> in <tt>ComputeFeature</tt> function.</p></div>
 <div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
+<h4><a name="DataLayer"></a>DataLayer</h4>
+<p>DataLayer is for loading Records.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">message RnnlmDataProto {
-    required string class_path = 1;   // path to the class data file/folder, absolute or relative to the workspace
-    required string word_path = 2;    // path to the word data file/folder, absolute or relative to the workspace
-    required int32 window_size = 3;   // window size.
-}
+<div class="source"><pre class="prettyprint">class DataLayer : public RNNLayer, singa::DataLayer {
+ public:
+  void Setup(const LayerProto&amp; proto, int npartitions) override;
+  void ComputeFeature(int flag, Metric *perf) override;
+  int max_window() const {
+    return max_window_;
+  }
+ private:
+  int max_window_;
+  singa::DataShard* shard_;
+};
 </pre></div></div>
-<p>[class_path to file or folder?]</p>
-<p>[There two paths, <tt>class_path</tt> for &#x2026;; <tt>word_path</tt> for.. The <tt>window_size</tt> is set to &#x2026;]</p></div></div>
-<div class="section">
-<h3><a name="RnnlmWordParserLayer"></a>RnnlmWordParserLayer</h3>
-<p>This layer gets <tt>window_size</tt> word strings from the <tt>RnnlmDataLayer</tt> and looks up the word string to word index map to get word indexes.</p>
-<div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
+<p>The Setup function gets the user configured max window size. Since this application predicts the next word for each input word, the record vector is resized to have max_window+1 records, where the k-th record is loaded as the ground truth label for the (k-1)-th record.</p>
+
+<div class="source">
+<div class="source"><pre class="prettyprint">max_window_ = proto.GetExtension(input_conf).max_window();
+records_.resize(max_window_ + 1);
+</pre></div></div>
+<p>The <tt>ComputeFeature</tt> function loads at most max_window records. It could also stop when the sentence ending character is encountered.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmWordparserLayer::Setup(){
-    Obtain window size from src layer;
-    Obtain vocabulary size from src layer;
-    Reshape data_ as {window_size};
+<div class="source"><pre class="prettyprint">records_[0] = records_[window_]; // shift the last record to the first
+window_ = max_window_;
+for (int i = 1; i &lt;= max_window_; i++) {
+  // load record; break if it is the ending character
 }
+</pre></div></div>
+<p>The configuration of <tt>DataLayer</tt> is like</p>
 
-void RnnlmWordparserLayer::ParseRecords(Blob* blob){
-  for each word record in the window, get its word index and insert the index into blob
+<div class="source">
+<div class="source"><pre class="prettyprint">name: &quot;data&quot;
+user_type: &quot;kData&quot;
+[input_conf] {
+  path: &quot;examples/rnnlm/train_shard&quot;
+  max_window: 10
 }
 </pre></div></div></div>
 <div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
-<p>This layer does not have specific configuration fields.</p></div></div>
-<div class="section">
-<h3><a name="RnnlmClassParserLayer"></a>RnnlmClassParserLayer</h3>
-<p>It maps each word in the processing window into a class index.</p>
-<div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
+<h4><a name="EmbeddingLayer"></a>EmbeddingLayer</h4>
+<p>This layer gets records from <tt>DataLayer</tt>. For each record, the word index is parsed and used to get the corresponding word feature vector from the embedding matrix.</p>
+<p>The class is declared as follows,</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmClassparserLayer::Setup(){
-  Obtain window size from src layer;
-  Obtain vocaubulary size from src layer;
-  Obtain class size from src layer;
-  Reshape data_ as {windowsize_, 4};
-}
-
-void RnnlmClassparserLayer::ParseRecords(){
-  for(int i = 1; i &lt; records.size(); i++){
-      Copy starting word index in this class to data[i]'s 1st position;
-      Copy ending word index in this class to data[i]'s 2nd position;
-      Copy index of input word to data[i]'s 3rd position;
-      Copy class index of input word to data[i]'s 4th position;
+<div class="source"><pre class="prettyprint">class EmbeddingLayer : public RNNLayer {
+  ...
+  const std::vector&lt;Param*&gt; GetParams() const override {
+    std::vector&lt;Param*&gt; params{embed_};
+    return params;
   }
+ private:
+  int word_dim_, vocab_size_;
+  Param* embed_;
 }
 </pre></div></div>
-<p>The setup function read</p></div>
-<div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
-<p>This layer fetches the class information (the mapping information between classes and words) from RnnlmDataLayer and maintains this information as data in this layer.</p>
-<p>Next, this layer parses the last &#x201c;window_size&#x201d; number of word records from RnnlmDataLayer and stores them as data. Then, it retrieves the corresponding class for each input word. It stores the starting word index of this class, ending word index of this class, word index and class index respectively.</p></div></div>
-<div class="section">
-<h3><a name="RnnlmWordInputLayer"></a>RnnlmWordInputLayer</h3>
-<p>Using the input word records, this layer obtains corresponding word vectors as its data. Then, it passes the data to RnnlmInnerProductLayer above for further processing.</p>
-<div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
-<p>In this layer, the length of each word vector needs to be configured. Besides, whether to use bias term during the training process should also be configured (See more in <a class="externalLink" href="https://github.com/kaiping/incubator-singa/blob/rnnlm/src/proto/job.proto">job.proto</a>).</p>
+<p>The <tt>embed_</tt> field is a matrix whose values are parameter to be learned. The matrix size is <tt>vocab_size_</tt> x <tt>word_dim_</tt>.</p>
+<p>The Setup function reads configurations for <tt>word_dim_</tt> and <tt>vocab_size_</tt>. Then it allocates feature Blob for <tt>max_window</tt> words and setups <tt>embed_</tt>.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">message RnnlmWordinputProto {
-    required int32 word_length = 1;  // vector length for each input word
-    optional bool bias_term = 30 [default = true];  // use bias vector or not
-}
-</pre></div></div></div>
-<div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
-<p>In setup phase, this layer first reshapes its members such as &#x201c;data&#x201d;, &#x201c;grad&#x201d;, and &#x201c;weight&#x201d; matrix. Then, it obtains the vocabulary size from its source layer (i.e., RnnlmWordParserLayer).</p>
-<p>In the forward phase, using the &#x201c;window_size&#x201d; number of input word indices, the &#x201c;window_size&#x201d; number of word vectors are selected from this layer&#x2019;s weight matrix, each word index corresponding to one row.</p>
+<div class="source"><pre class="prettyprint">int max_window = srclayers_[0]-&gt;data(this).shape()[0];
+word_dim_ = proto.GetExtension(embedding_conf).word_dim();
+data_.Reshape(vector&lt;int&gt;{max_window, word_dim_});
+...
+embed_-&gt;Setup(vector&lt;int&gt;{vocab_size_, word_dim_});
+</pre></div></div>
+<p>The <tt>ComputeFeature</tt> function simply copies the feature vector from the <tt>embed_</tt> matrix into the feature Blob.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmWordinputLayer::ComputeFeature() {
-    for(int t = 0; t &lt; windowsize_; t++){
-        data[t] = weight[src[t]];
-    }
+<div class="source"><pre class="prettyprint"># reset effective window size
+window_ = datalayer-&gt;window();
+auto records = datalayer-&gt;records();
+...
+for (int t = 0; t &lt; window_; t++) {
+  int idx = static_cast&lt;int&gt;(records[t].GetExtension(word).word_index());
+  Copy(words[t], embed[idx]);
 }
 </pre></div></div>
-<p>In the backward phase, after computing this layer&#x2019;s gradient in its destination layer (i.e., RnnlmInnerProductLayer), here the gradient of the weight matrix in this layer is copied (by row corresponding to word indices) from this layer&#x2019;s gradient.</p>
+<p>The <tt>ComputeGradient</tt> function copies back the gradients to the <tt>embed_</tt> matrix.</p>
+<p>The configuration for <tt>EmbeddingLayer</tt> is like,</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmWordinputLayer::ComputeGradient() {
-    for(int t = 0; t &lt; windowsize_; t++){
-        gweight[src[t]] = grad[t];
-    }
+<div class="source"><pre class="prettyprint">user_type: &quot;kEmbedding&quot;
+[embedding_conf] {
+  word_dim: 15
+  vocab_size: 3720
 }
-</pre></div></div></div></div>
-<div class="section">
-<h3><a name="RnnlmInnerProductLayer"></a>RnnlmInnerProductLayer</h3>
-<p>This is a neuron layer which receives the data from RnnlmWordInputLayer and sends the computation results to RnnlmSigmoidLayer.</p>
-<div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
-<p>In this layer, the number of neurons needs to be specified. Besides, whether to use a bias term should also be configured.</p>
-
-<div class="source">
-<div class="source"><pre class="prettyprint">message RnnlmInnerproductProto {
-    required int32 num_output = 1;  //Number of outputs for the layer
-    optional bool bias_term = 30 [default = true];  //Use bias vector or not
+srclayers: &quot;data&quot;
+param {
+  name: &quot;w1&quot;
+  init {
+    type: kUniform
+    low:-0.3
+    high:0.3
+  }
 }
 </pre></div></div></div>
 <div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
-<p>In the forward phase, this layer is in charge of executing the dot multiplication between its weight matrix and the data in its source layer (i.e., RnnlmWordInputLayer).</p>
+<h4><a name="LabelLayer"></a>LabelLayer</h4>
+<p>Since the label of records[i] is records[i+1]. This layer fetches the effective window records starting from position 1. It converts each record into a tuple (word_class_start, word_class_end, word_index, class_index).</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmInnerproductLayer::ComputeFeature() {
-    data = dot(src, weight);    //Dot multiplication operation
+<div class="source"><pre class="prettyprint">for (int i = 0; i &lt; window_; i++) {
+  WordRecord wordrecord = records[i + 1].GetExtension(word);
+  label[4 * i + 0] = wordrecord.class_start();
+  label[4 * i + 1] = wordrecord.class_end();
+  label[4 * i + 2] = wordrecord.word_index();
+  label[4 * i + 3] = wordrecord.class_index();
 }
 </pre></div></div>
-<p>In the backward phase, this layer needs to first compute the gradient of its source layer (i.e., RnnlmWordInputLayer). Then, it needs to compute the gradient of its weight matrix by aggregating computation results for each timestamp. The details can be seen as follows.</p>
-
-<div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmInnerproductLayer::ComputeGradient() {
-    for (int t = 0; t &lt; windowsize_; t++) {
-        Add the dot product of src[t] and grad[t] to gweight;
-    }
-    Copy the dot product of grad and weight to gsrc;
-}
-</pre></div></div></div></div>
-<div class="section">
-<h3><a name="RnnlmSigmoidLayer"></a>RnnlmSigmoidLayer</h3>
-<p>This is a neuron layer for computation. During the computation in this layer, each component of the member data specific to one timestamp uses its previous timestamp&#x2019;s data component as part of the input. This is how the time-order information is utilized in this language model application.</p>
-<p>Besides, if you want to implement a recurrent neural network following our design, this layer is of vital importance for you to refer to. Also, you can always think of other design methods to make use of information from past timestamps.</p>
+<p>There is no special configuration for this layer.</p></div>
 <div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
-<p>In this layer, whether to use a bias term needs to be specified.</p>
+<h4><a name="HiddenLayer"></a>HiddenLayer</h4>
+<p>This layer unrolls the recurrent connections for at most max_window times. The feature for position k is computed based on the feature from the embedding layer (position k) and the feature at position k-1 of this layer. The formula is</p>
+<p><tt>$$f[k]=\sigma (f[t-1]*W+src[t])$$</tt></p>
+<p>where <tt>$W$</tt> is a matrix with <tt>word_dim_</tt> x <tt>word_dim_</tt> parameters.</p>
+<p>If you want to implement a recurrent neural network following our design, this layer is of vital importance for you to refer to.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">message RnnlmSigmoidProto {
-    optional bool bias_term = 1 [default = true];  // use bias vector or not
-}
-</pre></div></div></div>
-<div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
-<p>In the forward phase, this layer first receives data from its source layer (i.e., RnnlmInnerProductLayer) which is used as one part input for computation. Then, for each timestampe this layer executes a dot multiplication between its previous timestamp information and its own weight matrix. The results are the other part for computation. This layer sums these two parts together and executes an activation operation. The detailed descriptions for this process are illustrated as follows.</p>
+<div class="source"><pre class="prettyprint">class HiddenLayer : public RNNLayer {
+  ...
+  const std::vector&lt;Param*&gt; GetParams() const override {
+    std::vector&lt;Param*&gt; params{weight_};
+    return params;
+  }
+private:
+  Param* weight_;
+};
+</pre></div></div>
+<p>The <tt>Setup</tt> function setups the weight matrix as</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmSigmoidLayer::ComputeFeature() {
-    for(int t = 0; t &lt; window_size; t++){
-        if(t == 0) Copy the sigmoid results of src[t] to data[t];
-        else Compute the dot product of data[t - 1] and weight, and add sigmoid results of src[t] to be data[t];
-   }
-}
+<div class="source"><pre class="prettyprint">weight_-&gt;Setup(std::vector&lt;int&gt;{word_dim, word_dim});
 </pre></div></div>
-<p>In the backward phase, this RnnlmSigmoidLayer first updates this layer&#x2019;s member grad utilizing the information from current timestamp&#x2019;s next timestamp. Then respectively, this layer computes the gradient for its weight matrix and its source layer RnnlmInnerProductLayer by iterating different timestamps. The process can be seen below.</p>
+<p>The <tt>ComputeFeature</tt> function gets the effective window size (<tt>window_</tt>) from its source layer i.e., the embedding layer. Then it propagates the feature from position 0 to position <tt>window_</tt> -1. The detailed descriptions for this process are illustrated as follows.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmSigmoidLayer::ComputeGradient(){
-    Update grad[t]; // Update the gradient for the current layer, add a new term from next timestamp
-    for (int t = 0; t &lt; windowsize_; t++) {
-            Update gweight; // Compute the gradient for the weight matrix
-            Compute gsrc[t];    // Compute the gradient for src layer
-    }
+<div class="source"><pre class="prettyprint">void HiddenLayer::ComputeFeature() {
+  for(int t = 0; t &lt; window_size; t++){
+    if(t == 0)
+      Copy(data[t], src[t]);
+    else
+      data[t]=sigmoid(data[t-1]*W + src[t]);
+  }
 }
-</pre></div></div></div></div>
-<div class="section">
-<h3><a name="RnnlmComputationLayer"></a>RnnlmComputationLayer</h3>
-<p>This layer is a loss layer in which the performance metrics, both the probability of predicting the next word correctly, and perplexity (PPL in short) are computed. To be specific, this layer is composed of the class information part and the word information part. Therefore, the computation can be essentially divided into two parts by slicing this layer&#x2019;s weight matrix.</p>
-<div class="section">
-<h4><a name="Configuration"></a>Configuration</h4>
-<p>In this layer, it is needed to specify whether to use a bias term during training.</p>
+</pre></div></div>
+<p>The <tt>ComputeGradient</tt> function computes the gradient of the loss w.r.t. W and the source layer. Particularly, for each position k, since data[k] contributes to data[k+1] and the feature at position k in its destination layer (the loss layer), grad[k] should contains the gradient from two parts. The destination layer has already computed the gradient from the loss layer into grad[k]; In the <tt>ComputeGradient</tt> function, we need to add the gradient from position k+1.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">message RnnlmComputationProto {
-    optional bool bias_term = 1 [default = true];  // use bias vector or not
+<div class="source"><pre class="prettyprint">void HiddenLayer::ComputeGradient(){
+  ...
+  for (int k = window_ - 1; k &gt;= 0; k--) {
+    if (k &lt; window_ - 1) {
+      grad[k] += dot(grad[k + 1], weight.T()); // add gradient from position t+1.
+    }
+    grad[k] =... // compute gL/gy[t], y[t]=data[t-1]*W+src[t]
+  }
+  gweight = dot(data.Slice(0, window_-1).T(), grad.Slice(1, window_));
+  Copy(gsrc, grad);
 }
-</pre></div></div></div>
+</pre></div></div>
+<p>After the loop, we get the gradient of the loss w.r.t y[k], which is used to compute the gradient of W and the src[k].</p></div>
 <div class="section">
-<h4><a name="Functionality"></a>Functionality</h4>
-<p>In the forward phase, by using the two sliced weight matrices (one is for class information, another is for the words in this class), this RnnlmComputationLayer calculates the dot product between the source layer&#x2019;s input and the sliced matrices. The results can be denoted as &#x201c;y1&#x201d; and &#x201c;y2&#x201d;. Then after a softmax function, for each input word, the probability distribution of classes and the words in this classes are computed. The activated results can be denoted as p1 and p2. Next, using the probability distribution, the PPL value is computed.</p>
+<h4><a name="LossLayer"></a>LossLayer</h4>
+<p>This layer computes the cross-entropy loss and the <tt>$log_{10}P(w_{t+1}|w_t)$</tt> (which could be averaged over all words by users to get the PPL value).</p>
+<p>There are two configuration fields to be specified by users.</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmComputationLayer::ComputeFeature() {
-    Compute y1 and y2;
-    p1 = Softmax(y1);
-    p2 = Softmax(y2);
-    Compute perplexity value PPL;
+<div class="source"><pre class="prettyprint">message LossProto {
+  optional int32 nclass = 1;
+  optional int32 vocab_size = 2;
 }
 </pre></div></div>
-<p>In the backward phase, this layer executes the following three computation operations. First, it computes the member gradient of the current layer by each timestamp. Second, this layer computes the gradient of its own weight matrix by aggregating calculated results from all timestamps. Third, it computes the gradient of its source layer, RnnlmSigmoidLayer, timestamp-wise.</p>
+<p>There are two weight matrices to be learned</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">void RnnlmComputationLayer::ComputeGradient(){
-    Compute grad[t] for all timestamps;
-    Compute gweight by aggregating results computed in different timestamps;
-    Compute gsrc[t] for all timestamps;
+<div class="source"><pre class="prettyprint">class LossLayer : public RNNLayer {
+  ...
+ private:
+  Param* word_weight_, *class_weight_;
 }
-</pre></div></div></div></div></div>
+</pre></div></div>
+<p>The ComputeFeature function computes the two probabilities respectively.</p>
+<p><tt>$$P(C_{w_{t+1}}|w_t) = Softmax(w_t * class\_weight_)$$</tt> <tt>$$P(w_{t+1}|C_{w_{t+1}}) = Softmax(w_t * word\_weight[class\_start:class\_end])$$</tt></p>
+<p><tt>$w_t$</tt> is the feature from the hidden layer for the k-th word, its ground truth next word is <tt>$w_{t+1}$</tt>. The first equation computes the probability distribution over all classes for the next word. The second equation computes the probability distribution over the words in the ground truth class for the next word.</p>
+<p>The ComputeGradient function computes the gradient of the source layer (i.e., the hidden layer) and the two weight matrices.</p></div></div>
 <div class="section">
-<h2><a name="Updater_Configuration"></a>Updater Configuration</h2>
-<p>We employ kFixedStep type of the learning rate change method and the configuration is as follows. We use different learning rate values in different step ranges. <a class="externalLink" href="http://wangwei-pc.d1.comp.nus.edu.sg:4000/docs/updater/">Here</a> is more information about choosing updaters.</p>
+<h3><a name="Updater_Configuration"></a>Updater Configuration</h3>
+<p>We employ kFixedStep type of the learning rate change method and the configuration is as follows. We decay the learning rate once the performance does not increase on the validation dataset.</p>
 
 <div class="source">
 <div class="source"><pre class="prettyprint">updater{
-    #weight_decay:0.0000001
-    lr_change: kFixedStep
-    type: kSGD
+  type: kSGD
+  learning_rate {
+    type: kFixedStep
     fixedstep_conf:{
       step:0
-      step:42810
-      step:49945
-      step:57080
-      step:64215
+      step:48810
+      step:56945
+      step:65080
+      step:73215
       step_lr:0.1
       step_lr:0.05
       step_lr:0.025
       step_lr:0.0125
       step_lr:0.00625
     }
+  }
 }
 </pre></div></div></div>
 <div class="section">
-<h2><a name="TrainOneBatch_Function"></a>TrainOneBatch() Function</h2>
+<h3><a name="TrainOneBatch_Function"></a>TrainOneBatch() Function</h3>
 <p>We use BP (BackPropagation) algorithm to train the RNN model here. The corresponding configuration can be seen below.</p>
 
 <div class="source">
 <div class="source"><pre class="prettyprint"># In job.conf file
-alg: kBackPropagation
-</pre></div></div>
-<p>Refer to <a class="externalLink" href="http://wangwei-pc.d1.comp.nus.edu.sg:4000/docs/train-one-batch/">here</a> for more information on different TrainOneBatch() functions.</p></div>
-<div class="section">
-<h2><a name="Cluster_Configuration"></a>Cluster Configuration</h2>
-<p>In this RNN language model, we configure the cluster topology as follows.</p>
-
-<div class="source">
-<div class="source"><pre class="prettyprint">cluster {
-  nworker_groups: 1
-  nserver_groups: 1
-  nservers_per_group: 1
-  nworkers_per_group: 1
-  nservers_per_procs: 1
-  nworkers_per_procs: 1
-  workspace: &quot;examples/rnnlm/&quot;
+train_one_batch {
+  alg: kBackPropagation
 }
-</pre></div></div>
-<p>This is to train the model in one node. For other configuration choices, please refer to <a class="externalLink" href="http://wangwei-pc.d1.comp.nus.edu.sg:4000/docs/frameworks/">here</a>.</p></div>
-<div class="section">
-<h2><a name="Configure_Job"></a>Configure Job</h2>
-<p>Job configuration is written in &#x201c;job.conf&#x201d;.</p>
-<p>Note: Extended field names should be embraced with square-parenthesis [], e.g., [singa.rnnlmdata_conf].</p></div>
-<div class="section">
-<h2><a name="Run_Training"></a>Run Training</h2>
-<p>Start training by the following commands</p>
-
-<div class="source">
-<div class="source"><pre class="prettyprint">cd SINGA_ROOT
-./bin/singa-run.sh -workspace=examples/rnnlm
 </pre></div></div></div>
+<div class="section">
+<h3><a name="Cluster_Configuration"></a>Cluster Configuration</h3>
+<p>The default cluster configuration can be used, i.e., single worker and single server in a single process.</p></div></div>
                   </div>
             </div>
           </div>

Modified: websites/staging/singa/trunk/content/docs/train-one-batch.html
==============================================================================
--- websites/staging/singa/trunk/content/docs/train-one-batch.html (original)
+++ websites/staging/singa/trunk/content/docs/train-one-batch.html Fri Sep 18 15:11:53 2015
@@ -1,13 +1,13 @@
 <!DOCTYPE html>
 <!--
- | Generated by Apache Maven Doxia at 2015-09-14 
+ | Generated by Apache Maven Doxia at 2015-09-18 
  | Rendered using Apache Maven Fluido Skin 1.4
 -->
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
-    <meta name="Date-Revision-yyyymmdd" content="20150914" />
+    <meta name="Date-Revision-yyyymmdd" content="20150918" />
     <meta http-equiv="Content-Language" content="en" />
     <title>Apache SINGA &#x2013; Train-One-Batch</title>
     <link rel="stylesheet" href="../css/apache-maven-fluido-1.4.min.css" />
@@ -20,7 +20,13 @@
   
     <script type="text/javascript" src="../js/apache-maven-fluido-1.4.min.js"></script>
 
-    
+                          
+        
+<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+                      
+        
+<script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script>
+          
                   </head>
         <body class="topBarEnabled">
           

Modified: websites/staging/singa/trunk/content/docs/updater.html
==============================================================================
--- websites/staging/singa/trunk/content/docs/updater.html (original)
+++ websites/staging/singa/trunk/content/docs/updater.html Fri Sep 18 15:11:53 2015
@@ -1,13 +1,13 @@
 <!DOCTYPE html>
 <!--
- | Generated by Apache Maven Doxia at 2015-09-14 
+ | Generated by Apache Maven Doxia at 2015-09-18 
  | Rendered using Apache Maven Fluido Skin 1.4
 -->
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
-    <meta name="Date-Revision-yyyymmdd" content="20150914" />
+    <meta name="Date-Revision-yyyymmdd" content="20150918" />
     <meta http-equiv="Content-Language" content="en" />
     <title>Apache SINGA &#x2013; Updater</title>
     <link rel="stylesheet" href="../css/apache-maven-fluido-1.4.min.css" />
@@ -20,7 +20,13 @@
   
     <script type="text/javascript" src="../js/apache-maven-fluido-1.4.min.js"></script>
 
-    
+                          
+        
+<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+                      
+        
+<script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script>
+          
                   </head>
         <body class="topBarEnabled">
           
@@ -483,6 +489,7 @@
         <div id="bodyColumn"  class="span10" >
                                   
             <h1>Updater</h1>
+<hr />
 <p>Every server in SINGA has an <a href="api/classsinga_1_1Updater.html">Updater</a> instance that updates parameters based on gradients. In this page, the <i>Basic user guide</i> describes the configuration of an updater. The <i>Advanced user guide</i> present details on how to implement a new updater and a new learning rate changing method.</p>
 <div class="section">
 <h2><a name="Basic_user_guide"></a>Basic user guide</h2>
@@ -511,7 +518,7 @@
   momentum: float
   weight_decay: float
   learning_rate {
-
+    ...
   }
 }
 </pre></div></div></div>
@@ -662,7 +669,7 @@
 <div class="section">
 <h2><a name="Advanced_user_guide"></a>Advanced user guide</h2>
 <div class="section">
-<h3><a name="Implementing_a_new_Update_subclass"></a>Implementing a new Update subclass</h3>
+<h3><a name="Implementing_a_new_Updater_subclass"></a>Implementing a new Updater subclass</h3>
 <p>The base Updater class has one virtual function,</p>
 
 <div class="source">
@@ -752,7 +759,7 @@ extend LRGenProto {
 <p>Users have to register this subclass in the main function,</p>
 
 <div class="source">
-<div class="source"><pre class="prettyprint">  driver.RegisterLRGenerator&lt;FooLRGen&gt;(&quot;FooLR&quot;)
+<div class="source"><pre class="prettyprint">  driver.RegisterLRGenerator&lt;FooLRGen, std::string&gt;(&quot;FooLR&quot;)
 </pre></div></div></div></div>
                   </div>
             </div>

Modified: websites/staging/singa/trunk/content/index.html
==============================================================================
--- websites/staging/singa/trunk/content/index.html (original)
+++ websites/staging/singa/trunk/content/index.html Fri Sep 18 15:11:53 2015
@@ -1,13 +1,13 @@
 <!DOCTYPE html>
 <!--
- | Generated by Apache Maven Doxia at 2015-09-14 
+ | Generated by Apache Maven Doxia at 2015-09-18 
  | Rendered using Apache Maven Fluido Skin 1.4
 -->
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
-    <meta name="Date-Revision-yyyymmdd" content="20150914" />
+    <meta name="Date-Revision-yyyymmdd" content="20150918" />
     <meta http-equiv="Content-Language" content="en" />
     <title>Apache SINGA &#x2013; Getting Started</title>
     <link rel="stylesheet" href="./css/apache-maven-fluido-1.4.min.css" />
@@ -20,7 +20,13 @@
   
     <script type="text/javascript" src="./js/apache-maven-fluido-1.4.min.js"></script>
 
-    
+                          
+        
+<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+                      
+        
+<script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script>
+          
                   </head>
         <body class="topBarEnabled">
           
@@ -489,24 +495,24 @@
 <ul>
   
 <li>
-<p>The <a class="externalLink" href="http://singa.incubator.apache.org/docs/overview.html">Introduction</a> page gives an overview of SINGA.</p></li>
+<p>The <a href="docs/overview.html">Introduction</a> page gives an overview of SINGA.</p></li>
   
 <li>
-<p>The <a class="externalLink" href="http://singa.incubator.apache.org/docs/installation.html">Installation</a> guide describes details on downloading and installing SINGA.</p></li>
+<p>The <a href="docs/installation.html">Installation</a> guide describes details on downloading and installing SINGA.</p></li>
   
 <li>
-<p>Please follow the <a class="externalLink" href="http://singa.incubator.apache.org/docs/quick-start.html">Quick Start</a> guide to run simple applications on SINGA.</p></li>
+<p>Please follow the <a href="docs/quick-start.html">Quick Start</a> guide to run simple applications on SINGA.</p></li>
 </ul></div>
 <div class="section">
 <h3><a name="Documentation"></a>Documentation</h3>
 
 <ul>
   
-<li>Documentations are listed <a class="externalLink" href="http://singa.incubator.apache.org/docs.html">here</a>.</li>
+<li>Documentations are listed <a href="docs.html">here</a>.</li>
   
-<li>Code API can be found <a class="externalLink" href="http://singa.incubator.apache.org/api/index.html">here</a>.</li>
+<li>Code API can be found <a href="api/index.html">here</a>.</li>
   
-<li>Research publication list is available <a class="externalLink" href="http://singa.incubator.apache.org/research/publication">here</a>.</li>
+<li>Research publication list is available <a class="externalLink" href="http://www.comp.nus.edu.sg/~dbsystem/singa//research/publication/">here</a>.</li>
 </ul></div>
 <div class="section">
 <h3><a name="How_to_contribute"></a>How to contribute</h3>
@@ -517,7 +523,7 @@
   
 <li>If you find any issues using SINGA, please report it to the <a class="externalLink" href="https://issues.apache.org/jira/browse/singa">Issue Tracker</a>.</li>
   
-<li>You can also contact with <a class="externalLink" href="http://singa.incubator.apache.org/dev/community">SINGA committers</a> directly.</li>
+<li>You can also contact with <a href="dev/community">SINGA committers</a> directly.</li>
 </ul>
 <p>More details on contributing to SINGA is described <a href="dev/contribute">here</a>.</p></div>
 <div class="section">
@@ -525,8 +531,9 @@
 
 <ul>
   
-<li>
-<p>SINGA will be presented at <a class="externalLink" href="http://boss.dima.tu-berlin.de/">BOSS</a> of <a class="externalLink" href="http://www.vldb.org/2015/">VLDB 2015</a> at Hawai&#x2019;i, 4 Sep, 2015. (slides: <a href="files/singa-vldb-boss.pptx">overview</a>, <a href="files/basic-user-guide.pptx">basic</a>, <a href="files/advanced-user-guide.pptx">advanced</a>)</p></li>
+<li>SINGA was presented in a <a class="externalLink" href="http://www.comp.nus.edu.sg/~dbsystem/singa/workshop">workshop on deep learning</a> held on 16 Sep, 2015</li>
+  
+<li>SINGA will be presented at <a class="externalLink" href="http://boss.dima.tu-berlin.de/">BOSS</a> of <a class="externalLink" href="http://www.vldb.org/2015/">VLDB 2015</a> at Hawai&#x2019;i, 4 Sep, 2015. (slides: <a href="files/singa-vldb-boss.pptx">overview</a>, <a href="files/basic-user-guide.pptx">basic</a>, <a href="files/advanced-user-guide.pptx">advanced</a>)</li>
   
 <li>
 <p>We will present SINGA at <a class="externalLink" href="http://adsc.illinois.edu/contact-us">ADSC/I2R Deep Learning Workshop</a>, 25 Aug, 2015.</p></li>
@@ -550,10 +557,10 @@
 <ul>
   
 <li>
-<p>B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao, Z. Luo, A. K. H. Tung, Y. Wang, Z. Xie, M. Zhang, and K. Zheng. <a class="externalLink" href="http://www.comp.nus.edu.sg/~ooibc/singaopen-mm15.pdf">SINGA: A distributed deep learning platform</a>. ACM Multimedia  (Open Source Software Competition) 2015 (<a class="externalLink" href="http://singa.incubator.apache.org/assets/file/bib-oss.txt">BibTex</a>).</p></li>
+<p>B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao, Z. Luo, A. K. H. Tung, Y. Wang, Z. Xie, M. Zhang, and K. Zheng. <a class="externalLink" href="http://www.comp.nus.edu.sg/~ooibc/singaopen-mm15.pdf">SINGA: A distributed deep learning platform</a>. ACM Multimedia  (Open Source Software Competition) 2015 (<a class="externalLink" href="http://www.comp.nus.edu.sg/~dbsystem/singa//assets/file/bib-oss.txt">BibTex</a>).</p></li>
   
 <li>
-<p>W. Wang, G. Chen, T. T. A. Dinh, B. C. Ooi, K.-L.Tan, J. Gao, and S. Wang. <a class="externalLink" href="http://www.comp.nus.edu.sg/~ooibc/singa-mm15.pdf">SINGA:putting deep learning in the hands of multimedia users</a>. ACM Multimedia 2015 (<a class="externalLink" href="http://singa.incubator.apache.org/assets/file/bib-singa.txt">BibTex</a>).</p></li>
+<p>W. Wang, G. Chen, T. T. A. Dinh, B. C. Ooi, K.-L.Tan, J. Gao, and S. Wang. <a class="externalLink" href="http://www.comp.nus.edu.sg/~ooibc/singa-mm15.pdf">SINGA:putting deep learning in the hands of multimedia users</a>. ACM Multimedia 2015 (<a class="externalLink" href="http://www.comp.nus.edu.sg/~dbsystem/singa//assets/file/bib-singa.txt">BibTex</a>).</p></li>
 </ul></div>
 <div class="section">
 <h3><a name="License"></a>License</h3>

Modified: websites/staging/singa/trunk/content/introduction.html
==============================================================================
--- websites/staging/singa/trunk/content/introduction.html (original)
+++ websites/staging/singa/trunk/content/introduction.html Fri Sep 18 15:11:53 2015
@@ -1,13 +1,13 @@
 <!DOCTYPE html>
 <!--
- | Generated by Apache Maven Doxia at 2015-09-14 
+ | Generated by Apache Maven Doxia at 2015-09-18 
  | Rendered using Apache Maven Fluido Skin 1.4
 -->
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
-    <meta name="Date-Revision-yyyymmdd" content="20150914" />
+    <meta name="Date-Revision-yyyymmdd" content="20150918" />
     <meta http-equiv="Content-Language" content="en" />
     <title>Apache SINGA &#x2013; Introduction</title>
     <link rel="stylesheet" href="./css/apache-maven-fluido-1.4.min.css" />
@@ -20,7 +20,13 @@
   
     <script type="text/javascript" src="./js/apache-maven-fluido-1.4.min.js"></script>
 
-    
+                          
+        
+<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+                      
+        
+<script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script>
+          
                   </head>
         <body class="topBarEnabled">
           

Modified: websites/staging/singa/trunk/content/quick-start.html
==============================================================================
--- websites/staging/singa/trunk/content/quick-start.html (original)
+++ websites/staging/singa/trunk/content/quick-start.html Fri Sep 18 15:11:53 2015
@@ -1,13 +1,13 @@
 <!DOCTYPE html>
 <!--
- | Generated by Apache Maven Doxia at 2015-09-14 
+ | Generated by Apache Maven Doxia at 2015-09-18 
  | Rendered using Apache Maven Fluido Skin 1.4
 -->
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
   <head>
     <meta charset="UTF-8" />
     <meta name="viewport" content="width=device-width, initial-scale=1.0" />
-    <meta name="Date-Revision-yyyymmdd" content="20150914" />
+    <meta name="Date-Revision-yyyymmdd" content="20150918" />
     <meta http-equiv="Content-Language" content="en" />
     <title>Apache SINGA &#x2013; Quick Start</title>
     <link rel="stylesheet" href="./css/apache-maven-fluido-1.4.min.css" />
@@ -20,7 +20,13 @@
   
     <script type="text/javascript" src="./js/apache-maven-fluido-1.4.min.js"></script>
 
-    
+                          
+        
+<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
+                      
+        
+<script type="text/x-mathjax-config">MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});</script>
+          
                   </head>
         <body class="topBarEnabled">
           



Mime
View raw message