predictionio-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From git-site-r...@apache.org
Subject [38/51] [abbrv] [partial] incubator-predictionio-site git commit: Documentation based on apache/incubator-predictionio#5f8a0c9272c4e3365a986ba95e13f9534ee70b2d
Date Fri, 06 Oct 2017 04:46:20 GMT
http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/32eb5edf/demo/supervisedlearning/index.html
----------------------------------------------------------------------
diff --git a/demo/supervisedlearning/index.html b/demo/supervisedlearning/index.html
new file mode 100644
index 0000000..bc9aacb
--- /dev/null
+++ b/demo/supervisedlearning/index.html
@@ -0,0 +1,6 @@
+<!DOCTYPE html><html><head><title>Machine Learning With PredictionIO</title><meta charset="utf-8"/><meta content="IE=edge,chrome=1" http-equiv="X-UA-Compatible"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta class="swiftype" name="title" data-type="string" content="Machine Learning With PredictionIO"/><link rel="canonical" href="https://predictionio.incubator.apache.org/demo/supervisedlearning/"/><link href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800" rel="stylesheet"/><link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet"/><link href="/stylesheets/application-3a3867f7.css" rel="stylesheet" type="text/css"/><script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><scr
 ipt src="//cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: true });}catch(e){}</script></head><body><div id="global"><header><div class="container" id="header-wrapper"><div class="row"><div class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a href="#"></a><a href="http://predictionio.incubator.apache.org/"><img alt="PredictionIO" id="logo" src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" href="//github.com/apache/incubator-predictionio/">OPEN SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md hidden-lg" src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div id="search-bar-row-wrapper"><div class="container-fluid" id="search-bar-row"><div class="row"><div class="col-md
 -9 col-sm-11 col-xs-11"><div class="hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO Docs</p><h4>Machine Learning With PredictionIO</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img id="left-menu-indicator" src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img src="/images/icons/search-glass-704bd4ff.png"/><input type="text" id="st-search-input" class="st-search-input" placeholder="Search Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div class="mobile-left-menu-toggler hidden-md hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div 
 class="row"><div id="left-menu-wrapper" class="col-md-3"><nav id="nav-main"><ul><li class="level-1"><a class="expandible" href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO (incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Getting Started</span></a><ul><li class="level-2"><a class="final" href="/start/"><span>A Quick Intro</span></a></li><li class="level-2"><a class="final" href="/install/"><span>Installing Apache PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" href="/start/download/"><span>Downloading an Engine Template</span></a></li><li class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your First Engine</span></a></li><li class="level-2"><a class="final" href="/start/customize/"><span>Customizing the Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" href="
 #"><span>Integrating with Your App</span></a><ul><li class="level-2"><a class="final" href="/appintegration/"><span>App Integration Overview</span></a></li><li class="level-2"><a class="expandible" href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/php/"><span>PHP SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web Service</span></a></li><li class="level-2"><a class="final" href="/cli/#engine-commands"><span>Engine Comman
 d-line Interface</span></a></li><li class="level-2"><a class="final" href="/batchpredict/"><span>Batch Predictions</span></a></li><li class="level-2"><a class="final" href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying Multiple Engine Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a class="final" href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li class="level-2"><a class="final" href="/customize/troubleshooting/"><span>Troubleshooting Engine Development</span></a></li><li class="level-2"><a class="final" href="/api/current/#package"><span>Engine Scala APIs</span></a></li></u
 l></li><li class="level-1"><a class="expandible" href="#"><span>Collecting and Analyzing Data</span></a><ul><li class="level-2"><a class="final" href="/datacollection/"><span>Event Server Overview</span></a></li><li class="level-2"><a class="final" href="/cli/#event-server-commands"><span>Event Server Command-line Interface</span></a></li><li class="level-2"><a class="final" href="/datacollection/eventapi/"><span>Collecting Data with REST/SDKs</span></a></li><li class="level-2"><a class="final" href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li class="level-2"><a class="final" href="/datacollection/webhooks/"><span>Unifying Multichannel Data with Webhooks</span></a></li><li class="level-2"><a class="final" href="/datacollection/channel/"><span>Channel</span></a></li><li class="level-2"><a class="final" href="/datacollection/batchimport/"><span>Importing Data in Batch</span></a></li><li class="level-2"><a class="final" href="/datacollection/analytics/"><span>
 Using Analytics Tools</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"><a class="final" href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></li><li class="level-2"><a class="final" href="/algorithm/switch/"><span>Switching to Another Algorithm</span></a></li><li class="level-2"><a class="final" href="/algorithm/multiple/"><span>Combining Multiple Algorithms</span></a></li><li class="level-2"><a class="final" href="/algorithm/custom/"><span>Adding Your Own Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a class="final" href="/evaluation/"><span>Overview</span></a></li><li class="level-2"><a class="final" href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li class="level-2"><a class="final" href="/evaluation/evaluationdashboard/"><span>Evaluation Dashboa
 rd</span></a></li><li class="level-2"><a class="final" href="/evaluation/metricchoose/"><span>Choosing Evaluation Metrics</span></a></li><li class="level-2"><a class="final" href="/evaluation/metricbuild/"><span>Building Evaluation Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>System Architecture</span></a><ul><li class="level-2"><a class="final" href="/system/"><span>Architecture Overview</span></a></li><li class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using Another Data Store</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>PredictionIO Official Templates</span></a><ul><li class="level-2"><a class="final" href="/templates/"><span>Intro</span></a></li><li class="level-2"><a class="expandible" href="#"><span>Recommendation</span></a><ul><li class="level-3"><a class="final" href="/templates/recommendation/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="fi
 nal" href="/templates/recommendation/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/evaluation/"><span>Evaluation Explained</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/reading-custom-events/"><span>Read Custom Events</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/customize-data-prep/"><span>Customize Data Preparator</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/customize-serving/"><span>Customize Serving</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/training-with-implicit-preference/"><span>Train with Implicit Preference</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/blacklist-items/"><span>Filter Recommended Items by Blacklist in Query</
 span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train with Rate Event</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust Score</span></a></li></ul></li><li class="level-2"><a class="expandible" href="#"><span>Similar Product</span></a><ul><li class="level-3"><
 a class="final" href="/templates/similarproduct/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple Events and Multiple Algorithms</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/return-item-properties/"><span>Returns Item Properties</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate Event</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events for Users</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/recommended-user/"><span>Recommend Users</span></a></li
 ></ul></li><li class="level-2"><a class="expandible" href="#"><span>Classification</span></a><ul><li class="level-3"><a class="final" href="/templates/classification/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/classification/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/classification/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/classification/add-algorithm/"><span>Use Alternative Algorithm</span></a></li><li class="level-3"><a class="final" href="/templates/classification/reading-custom-properties/"><span>Read Custom Properties</span></a></li></ul></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li class="level-2"><a class="final" href="/gallery/template-gallery/"><span>Browse</span></a></li><li class="level-2"><a class="final" href="/community/submit-template/"><span>Submit your 
 Engine as a Template</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a class="final" href="/demo/tapster/"><span>Comics Recommendation Demo</span></a></li><li class="level-2"><a class="final" href="/demo/community/"><span>Community Contributed Demo</span></a></li><li class="level-2"><a class="final" href="/demo/textclassification/"><span>Text Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li class="level-2"><a class="final" href="/community/contribute-code/"><span>Contribute Code</span></a></li><li class="level-2"><a class="final" href="/community/contribute-documentation/"><span>Contribute Documentation</span></a></li><li class="level-2"><a class="final" href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li class="level-2"><a class="final" href="/community/contribute-webh
 ook/"><span>Contribute a Webhook</span></a></li><li class="level-2"><a class="final" href="/community/projects/"><span>Community Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a class="final" href="/support/"><span>Support</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" href="/resources/release/"><span>Release Cadence</span></a></li><li class="level-2"><a class="final" href="/resources/intellij/"><span>Developing Engines with IntelliJ IDEA</span></a></li><li class="level-2"><a class="final" href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li class="level-2"><a class="final" href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><sp
 an>Apache Software Foundation</span></a><ul><li class="level-2"><a class="final" href="https://www.apache.org/"><span>Apache Homepage</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/licenses/"><span>License</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/foundation/sponsorship.html"><span>Sponsorship</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/foundation/thanks.html"><span>Thanks</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/security/"><span>Security</span></a></li></ul></li></ul></nav></div><div class="col-md-9 col-sm-12"><div class="content-header hidden-md hidden-lg"><div id="page-title"><h1>Machine Learning With PredictionIO</h1></div></div><div id="table-of-content-wrapper"><h5>On this page</h5><aside id="table-of-contents"><ul> <li> <a href="#introduction-to-supervised-learning">Introduction to Supervised Learning</a> </li> <li> <a href="#pr
 edictionio-and-supervised-learning">PredictionIO and Supervised Learning</a> </li> </ul> </aside><hr/><a id="edit-page-link" href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/demo/supervisedlearning.html.md"><img src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div class="content-header hidden-sm hidden-xs"><div id="page-title"><h1>Machine Learning With PredictionIO</h1></div></div><div class="content"> <p>This guide is designed to give developers a brief introduction to fundamental concepts in machine learning, as well as an explanation of how these concept tie into PredictionIO&#39;s engine development platform. This particular guide will largely deal with giving some</p><h2 id='introduction-to-supervised-learning' class='header-anchors'>Introduction to Supervised Learning</h2><p>The first question we must ask is: what is machine learning? <strong>Machine learning</strong> is the field of study at the intersection of compu
 ter science, engineering, mathematics, and statistics which seeks to discover or infer patterns hidden within a set of observations, which we call our data. Some examples of problems that machine learning seeks to solve are:</p> <ul> <li>Predict whether a patient has breast cancer based on their mammogram results.</li> <li>Predict whether an e-mail is spam or not based on the e-mail&#39;s content.</li> <li>Predict today&#39;s temperature based on climate variables collected for the previous week.</li> </ul> <h3 id='thinking-about-data' class='header-anchors'>Thinking About Data</h3><p>In the latter examples, we are trying to predict an outcome \(Y\), or <strong>response</strong>, based on some recorded or observed variables \(X\), or <strong>features</strong>. For example: in the third problem each observation is a patient, the response variable \(Y\) is equal to 1 if this patient has breast cancer and 0 otherwise, and \(X\) represents the mammogram results.</p><p>When we say we wan
 t to predict \(Y\) using \(X\), we are trying to answer the question: how does a response \(Y\) depend on a set of features \(X\) affect the response \(Y\)? To do this we need a set of observations, which we call our <strong>training data</strong>, consisting of observations for which we have observed both \(Y\) and \(X\), in order to make inference about this relationship.</p><h3 id='different-types-of-supervised-learning-problems' class='header-anchors'>Different Types of Supervised Learning Problems</h3><p>Note that in the first two examples, the outcome \(Y\) can only take on two values (1 : cancer/spam, 0: no cancer/ no spam). Whenever the outcome variable \(Y\) denotes a label associated to a particular group of observations (i.e. cancer group), the <strong>supervised learning</strong> problem is also called a <strong>classification</strong> problem. In the third example, however, \(Y\) can take on any numerical value since it denotes some temperature reading (i.e. 25.143, 25.
 14233, 32.0). These types of supervised learning problems are also called <strong>regression</strong> problems.</p><h3 id='training-a-predictive-model' class='header-anchors'>Training a Predictive Model</h3><p>A predictive model should be thought of as a function \(f\) that takes as input a set of features, and outputs a predicted outcome (i.e. \(f(X) = Y\)). The phrase <strong>training a model</strong> simply refers to the process of using the training data to estimate such a function. </p><h2 id='predictionio-and-supervised-learning' class='header-anchors'>PredictionIO and Supervised Learning</h2><p>Machine learning methods generally assume that our observation responses and features are numeric vectors. We will say that observations in this format are in <strong>standard form</strong>. However, when you are working with real-life data this will often not be the case. The data will often be formatted in a manner that is specific to the application&#39;s needs. As an example, let&#
 39;s suppose our application is <a href="http://stackoverflow.com">StackOverFlow</a>. The data we want to analyze are questions, and we want to predict based on a question&#39;s content whether or not it is related to Scala.</p><p><strong>Self-check:</strong> Is this a classification or regression problem?</p><h3 id='thinking-about-data-with-predictionio' class='header-anchors'>Thinking About Data With PredictionIO</h3><p>PredictionIO&#39;s predictive engine development platform allows you to easily incorporate observations that are not in standard form. Continuing with our example, we can import the observations, or StackOverFlow questions, into <a href="/datacollection/">PredictionIO&#39;s Event Server</a> as events with the following properties:</p><p><code>properties = {question : String, topic : String}</code></p><p>The value <code>question</code> is the actual question stored as a <code>String</code>, and topic is also a string equal to either <code>&quot;Scala&quot;</code> or
  <code>&quot;Other&quot;</code>. Our outcome here is <code>topic</code>, and <code>question</code> will provide a source for extracting features. That is, we will be using <code>question</code> to predict the outcome <code>topic</code>.</p><p>Once the observations are loaded as events into the Event Server, the engine&#39;s <a href="/customize/">Data Source</a> component is able to read them, which allows you to treat them as objects in a Scala project. The engine&#39;s Preparator component is in charge of converting these observations into standard form. To do this, we can first map the topic values as follows:</p><p><code>Map(&quot;Other&quot; -&gt; 0, &quot;Scala&quot; -&gt; 1)</code>.</p><p>We can then vectorize the observation&#39;s associated question text to obtain a numeric feature vector for each of our observations. This text vectorization procedure is an example of a general concept in machine learning called <strong>feature extraction</strong>. After performing these tra
 nsformations of our observations, they are now in standard form and can be used for training a large quantity of machine learning models.</p><h3 id='training-the-model-with-predictionio' class='header-anchors'>Training the Model With PredictionIO</h3><p>The Algorithm engine component serves two purposes: outputting a predictive model \(f\) and using this to predict the outcome variable. Here \(f\) takes as input a vectorized question and outputs either 0 or 1. However, our <code>Query</code> input will be again a question, and our <code>PredictedResult</code> the topic associated to the predicted label (0 or 1):</p><p><code>Query = {question : String}</code> <code>PredictedResult = {topic : String}</code></p><p>With PredictionIO&#39;s engine development platform, you can easily automate the vectorization of the Query question, as well as mapping the predicted label to the appropriate topic output format.</p></div></div></div></div><footer><div class="container"><div class="seperator
 "></div><div class="row"><div class="col-md-6 footer-link-column"><div class="footer-link-column-row"><h4>Community</h4><ul><li><a href="//predictionio.incubator.apache.org/install/" target="blank">Download</a></li><li><a href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a href="//github.com/apache/incubator-predictionio" target="blank">GitHub</a></li><li><a href="mailto:user-subscribe@predictionio.incubator.apache.org" target="blank">Subscribe to User Mailing List</a></li><li><a href="//stackoverflow.com/questions/tagged/predictionio" target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 footer-link-column"><div class="footer-link-column-row"><h4>Contribute</h4><ul><li><a href="//predictionio.incubator.apache.org/community/contribute-code/" target="blank">Contribute</a></li><li><a href="//github.com/apache/incubator-predictionio" target="blank">Source Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" target="blank">Bug Tr
 acker</a></li><li><a href="mailto:dev-subscribe@predictionio.incubator.apache.org" target="blank">Subscribe to Development Mailing List</a></li></ul></div></div></div><div class="row"><div class="col-md-12 footer-link-column"><a class="pull-right" href="http://incubator.apache.org/projects/predictionio.html"><img alt="Apache Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache PredictionIO is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.</span></div></div></div><div id="footer-bottom"><div class=
 "container"><div class="row"><div class="col-md-12"><div id="footer-logo-wrapper"><img alt="PredictionIO" src="/images/logos/logo-white-d1e9c6e6.png"/></div><div id="social-icons-wrapper"><a class="github-button" href="https://github.com/apache/incubator-predictionio" data-style="mega" data-count-href="/apache/incubator-predictionio/stargazers" data-count-api="/repos/apache/incubator-predictionio#stargazers_count" data-count-aria-label="# stargazers on GitHub" aria-label="Star apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" href="https://github.com/apache/incubator-predictionio/fork" data-icon="octicon-git-branch" data-style="mega" data-count-href="/apache/incubator-predictionio/network" data-count-api="/repos/apache/incubator-predictionio#forks_count" data-count-aria-label="# forks on GitHub" aria-label="Fork apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" async="" defer="" src="https://buttons.github.io/buttons.js"></script><a h
 ref="https://twitter.com/predictionio" target="blank"><img alt="PredictionIO on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a href="https://www.facebook.com/predictionio" target="blank"><img alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> </div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/32eb5edf/demo/supervisedlearning/index.html.gz
----------------------------------------------------------------------
diff --git a/demo/supervisedlearning/index.html.gz b/demo/supervisedlearning/index.html.gz
new file mode 100644
index 0000000..f6842d0
Binary files /dev/null and b/demo/supervisedlearning/index.html.gz differ

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/32eb5edf/demo/tapster/index.html
----------------------------------------------------------------------
diff --git a/demo/tapster/index.html b/demo/tapster/index.html
new file mode 100644
index 0000000..6186fe7
--- /dev/null
+++ b/demo/tapster/index.html
@@ -0,0 +1,269 @@
+<!DOCTYPE html><html><head><title>Comics Recommendation Demo</title><meta charset="utf-8"/><meta content="IE=edge,chrome=1" http-equiv="X-UA-Compatible"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><meta class="swiftype" name="title" data-type="string" content="Comics Recommendation Demo"/><link rel="canonical" href="https://predictionio.incubator.apache.org/demo/tapster/"/><link href="/images/favicon/normal-b330020a.png" rel="shortcut icon"/><link href="/images/favicon/apple-c0febcf2.png" rel="apple-touch-icon"/><link href="//fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800" rel="stylesheet"/><link href="//maxcdn.bootstrapcdn.com/font-awesome/4.2.0/css/font-awesome.min.css" rel="stylesheet"/><link href="/stylesheets/application-3a3867f7.css" rel="stylesheet" type="text/css"/><script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script><script src="//cdn.mathjax.org/
 mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script><script src="//use.typekit.net/pqo0itb.js"></script><script>try{Typekit.load({ async: true });}catch(e){}</script></head><body><div id="global"><header><div class="container" id="header-wrapper"><div class="row"><div class="col-sm-12"><div id="logo-wrapper"><span id="drawer-toggle"></span><a href="#"></a><a href="http://predictionio.incubator.apache.org/"><img alt="PredictionIO" id="logo" src="/images/logos/logo-ee2b9bb3.png"/></a></div><div id="menu-wrapper"><div id="pill-wrapper"><a class="pill left" href="/gallery/template-gallery">TEMPLATES</a> <a class="pill right" href="//github.com/apache/incubator-predictionio/">OPEN SOURCE</a></div></div><img class="mobile-search-bar-toggler hidden-md hidden-lg" src="/images/icons/search-glass-704bd4ff.png"/></div></div></div></header><div id="search-bar-row-wrapper"><div class="container-fluid" id="search-bar-row"><div class="row"><div class="col-md-9 col-sm-11 col-xs-11"><di
 v class="hidden-md hidden-lg" id="mobile-page-heading-wrapper"><p>PredictionIO Docs</p><h4>Comics Recommendation Demo</h4></div><h4 class="hidden-sm hidden-xs">PredictionIO Docs</h4></div><div class="col-md-3 col-sm-1 col-xs-1 hidden-md hidden-lg"><img id="left-menu-indicator" src="/images/icons/down-arrow-dfe9f7fe.png"/></div><div class="col-md-3 col-sm-12 col-xs-12 swiftype-wrapper"><div class="swiftype"><form class="search-form"><img class="search-box-toggler hidden-xs hidden-sm" src="/images/icons/search-glass-704bd4ff.png"/><div class="search-box"><img src="/images/icons/search-glass-704bd4ff.png"/><input type="text" id="st-search-input" class="st-search-input" placeholder="Search Doc..."/></div><img class="swiftype-row-hider hidden-md hidden-lg" src="/images/icons/drawer-toggle-active-fcbef12a.png"/></form></div></div><div class="mobile-left-menu-toggler hidden-md hidden-lg"></div></div></div></div><div id="page" class="container-fluid"><div class="row"><div id="left-menu-wrap
 per" class="col-md-3"><nav id="nav-main"><ul><li class="level-1"><a class="expandible" href="/"><span>Apache PredictionIO (incubating) Documentation</span></a><ul><li class="level-2"><a class="final" href="/"><span>Welcome to Apache PredictionIO (incubating)</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Getting Started</span></a><ul><li class="level-2"><a class="final" href="/start/"><span>A Quick Intro</span></a></li><li class="level-2"><a class="final" href="/install/"><span>Installing Apache PredictionIO (incubating)</span></a></li><li class="level-2"><a class="final" href="/start/download/"><span>Downloading an Engine Template</span></a></li><li class="level-2"><a class="final" href="/start/deploy/"><span>Deploying Your First Engine</span></a></li><li class="level-2"><a class="final" href="/start/customize/"><span>Customizing the Engine</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Integrating with Your App<
 /span></a><ul><li class="level-2"><a class="final" href="/appintegration/"><span>App Integration Overview</span></a></li><li class="level-2"><a class="expandible" href="/sdk/"><span>List of SDKs</span></a><ul><li class="level-3"><a class="final" href="/sdk/java/"><span>Java & Android SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/php/"><span>PHP SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/python/"><span>Python SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/ruby/"><span>Ruby SDK</span></a></li><li class="level-3"><a class="final" href="/sdk/community/"><span>Community Powered SDKs</span></a></li></ul></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Deploying an Engine</span></a><ul><li class="level-2"><a class="final" href="/deploy/"><span>Deploying as a Web Service</span></a></li><li class="level-2"><a class="final" href="/cli/#engine-commands"><span>Engine Command-line Interface</span></a></li><li
  class="level-2"><a class="final" href="/batchpredict/"><span>Batch Predictions</span></a></li><li class="level-2"><a class="final" href="/deploy/monitoring/"><span>Monitoring Engine</span></a></li><li class="level-2"><a class="final" href="/deploy/engineparams/"><span>Setting Engine Parameters</span></a></li><li class="level-2"><a class="final" href="/deploy/enginevariants/"><span>Deploying Multiple Engine Variants</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Customizing an Engine</span></a><ul><li class="level-2"><a class="final" href="/customize/"><span>Learning DASE</span></a></li><li class="level-2"><a class="final" href="/customize/dase/"><span>Implement DASE</span></a></li><li class="level-2"><a class="final" href="/customize/troubleshooting/"><span>Troubleshooting Engine Development</span></a></li><li class="level-2"><a class="final" href="/api/current/#package"><span>Engine Scala APIs</span></a></li></ul></li><li class="level-1"><a class
 ="expandible" href="#"><span>Collecting and Analyzing Data</span></a><ul><li class="level-2"><a class="final" href="/datacollection/"><span>Event Server Overview</span></a></li><li class="level-2"><a class="final" href="/cli/#event-server-commands"><span>Event Server Command-line Interface</span></a></li><li class="level-2"><a class="final" href="/datacollection/eventapi/"><span>Collecting Data with REST/SDKs</span></a></li><li class="level-2"><a class="final" href="/datacollection/eventmodel/"><span>Events Modeling</span></a></li><li class="level-2"><a class="final" href="/datacollection/webhooks/"><span>Unifying Multichannel Data with Webhooks</span></a></li><li class="level-2"><a class="final" href="/datacollection/channel/"><span>Channel</span></a></li><li class="level-2"><a class="final" href="/datacollection/batchimport/"><span>Importing Data in Batch</span></a></li><li class="level-2"><a class="final" href="/datacollection/analytics/"><span>Using Analytics Tools</span></a></l
 i></ul></li><li class="level-1"><a class="expandible" href="#"><span>Choosing an Algorithm(s)</span></a><ul><li class="level-2"><a class="final" href="/algorithm/"><span>Built-in Algorithm Libraries</span></a></li><li class="level-2"><a class="final" href="/algorithm/switch/"><span>Switching to Another Algorithm</span></a></li><li class="level-2"><a class="final" href="/algorithm/multiple/"><span>Combining Multiple Algorithms</span></a></li><li class="level-2"><a class="final" href="/algorithm/custom/"><span>Adding Your Own Algorithms</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>ML Tuning and Evaluation</span></a><ul><li class="level-2"><a class="final" href="/evaluation/"><span>Overview</span></a></li><li class="level-2"><a class="final" href="/evaluation/paramtuning/"><span>Hyperparameter Tuning</span></a></li><li class="level-2"><a class="final" href="/evaluation/evaluationdashboard/"><span>Evaluation Dashboard</span></a></li><li class="level-
 2"><a class="final" href="/evaluation/metricchoose/"><span>Choosing Evaluation Metrics</span></a></li><li class="level-2"><a class="final" href="/evaluation/metricbuild/"><span>Building Evaluation Metrics</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>System Architecture</span></a><ul><li class="level-2"><a class="final" href="/system/"><span>Architecture Overview</span></a></li><li class="level-2"><a class="final" href="/system/anotherdatastore/"><span>Using Another Data Store</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>PredictionIO Official Templates</span></a><ul><li class="level-2"><a class="final" href="/templates/"><span>Intro</span></a></li><li class="level-2"><a class="expandible" href="#"><span>Recommendation</span></a><ul><li class="level-3"><a class="final" href="/templates/recommendation/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/recommendatio
 n/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/evaluation/"><span>Evaluation Explained</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/reading-custom-events/"><span>Read Custom Events</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/customize-data-prep/"><span>Customize Data Preparator</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/customize-serving/"><span>Customize Serving</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/training-with-implicit-preference/"><span>Train with Implicit Preference</span></a></li><li class="level-3"><a class="final" href="/templates/recommendation/blacklist-items/"><span>Filter Recommended Items by Blacklist in Query</span></a></li><li class="level-3"><
 a class="final" href="/templates/recommendation/batch-evaluator/"><span>Batch Persistable Evaluator</span></a></li></ul></li><li class="level-2"><a class="expandible" href="#"><span>E-Commerce Recommendation</span></a><ul><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/train-with-rate-event/"><span>Train with Rate Event</span></a></li><li class="level-3"><a class="final" href="/templates/ecommercerecommendation/adjust-score/"><span>Adjust Score</span></a></li></ul></li><li class="level-2"><a class="expandible" href="#"><span>Similar Product</span></a><ul><li class="level-3"><a class="final" href="/templates/si
 milarproduct/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/multi-events-multi-algos/"><span>Multiple Events and Multiple Algorithms</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/return-item-properties/"><span>Returns Item Properties</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/train-with-rate-event/"><span>Train with Rate Event</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/rid-user-set-event/"><span>Get Rid of Events for Users</span></a></li><li class="level-3"><a class="final" href="/templates/similarproduct/recommended-user/"><span>Recommend Users</span></a></li></ul></li><li class="level-2"><a c
 lass="expandible" href="#"><span>Classification</span></a><ul><li class="level-3"><a class="final" href="/templates/classification/quickstart/"><span>Quick Start</span></a></li><li class="level-3"><a class="final" href="/templates/classification/dase/"><span>DASE</span></a></li><li class="level-3"><a class="final" href="/templates/classification/how-to/"><span>How-To</span></a></li><li class="level-3"><a class="final" href="/templates/classification/add-algorithm/"><span>Use Alternative Algorithm</span></a></li><li class="level-3"><a class="final" href="/templates/classification/reading-custom-properties/"><span>Read Custom Properties</span></a></li></ul></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Engine Template Gallery</span></a><ul><li class="level-2"><a class="final" href="/gallery/template-gallery/"><span>Browse</span></a></li><li class="level-2"><a class="final" href="/community/submit-template/"><span>Submit your Engine as a Template</span></a></li
 ></ul></li><li class="level-1"><a class="expandible" href="#"><span>Demo Tutorials</span></a><ul><li class="level-2"><a class="final active" href="/demo/tapster/"><span>Comics Recommendation Demo</span></a></li><li class="level-2"><a class="final" href="/demo/community/"><span>Community Contributed Demo</span></a></li><li class="level-2"><a class="final" href="/demo/textclassification/"><span>Text Classification Engine Tutorial</span></a></li></ul></li><li class="level-1"><a class="expandible" href="/community/"><span>Getting Involved</span></a><ul><li class="level-2"><a class="final" href="/community/contribute-code/"><span>Contribute Code</span></a></li><li class="level-2"><a class="final" href="/community/contribute-documentation/"><span>Contribute Documentation</span></a></li><li class="level-2"><a class="final" href="/community/contribute-sdk/"><span>Contribute a SDK</span></a></li><li class="level-2"><a class="final" href="/community/contribute-webhook/"><span>Contribute a Web
 hook</span></a></li><li class="level-2"><a class="final" href="/community/projects/"><span>Community Projects</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Getting Help</span></a><ul><li class="level-2"><a class="final" href="/resources/faq/"><span>FAQs</span></a></li><li class="level-2"><a class="final" href="/support/"><span>Support</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Resources</span></a><ul><li class="level-2"><a class="final" href="/resources/release/"><span>Release Cadence</span></a></li><li class="level-2"><a class="final" href="/resources/intellij/"><span>Developing Engines with IntelliJ IDEA</span></a></li><li class="level-2"><a class="final" href="/resources/upgrade/"><span>Upgrade Instructions</span></a></li><li class="level-2"><a class="final" href="/resources/glossary/"><span>Glossary</span></a></li></ul></li><li class="level-1"><a class="expandible" href="#"><span>Apache Software Foundatio
 n</span></a><ul><li class="level-2"><a class="final" href="https://www.apache.org/"><span>Apache Homepage</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/licenses/"><span>License</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/foundation/sponsorship.html"><span>Sponsorship</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/foundation/thanks.html"><span>Thanks</span></a></li><li class="level-2"><a class="final" href="https://www.apache.org/security/"><span>Security</span></a></li></ul></li></ul></nav></div><div class="col-md-9 col-sm-12"><div class="content-header hidden-md hidden-lg"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a href="#">Demo Tutorials</a><span class="spacer">&gt;</span></li><li><span class="last">Comics Recommendation Demo</span></li></ul></div><div id="page-title"><h1>Comics Recommendation Demo</h1></div></div><div id="table-of-content-wrapper"><h5>On thi
 s page</h5><aside id="table-of-contents"><ul> <li> <a href="#introduction">Introduction</a> </li> <li> <a href="#tapster-demo-application">Tapster Demo Application</a> </li> <li> <a href="#apache-predictionio-incubating-setup">Apache PredictionIO (incubating) Setup</a> </li> <li> <a href="#import-data">Import Data</a> </li> <li> <a href="#connect-demo-app-with-apache-predictionio-incubating">Connect Demo app with Apache PredictionIO (incubating)</a> </li> <li> <a href="#links">Links</a> </li> <li> <a href="#conclusion">Conclusion</a> </li> </ul> </aside><hr/><a id="edit-page-link" href="https://github.com/apache/incubator-predictionio/tree/livedoc/docs/manual/source/demo/tapster.html.md"><img src="/images/icons/edit-pencil-d6c1bb3d.png"/>Edit this page</a></div><div class="content-header hidden-sm hidden-xs"><div id="breadcrumbs" class="hidden-sm hidden xs"><ul><li><a href="#">Demo Tutorials</a><span class="spacer">&gt;</span></li><li><span class="last">Comics Recommendation Demo</s
 pan></li></ul></div><div id="page-title"><h1>Comics Recommendation Demo</h1></div></div><div class="content"> <h2 id='introduction' class='header-anchors'>Introduction</h2><p>In this demo, we will show you how to build a Tinder-style web application (named &quot;Tapster&quot;) recommending comics to users based on their likes/dislikes of episodes interactively.</p><p>The demo will use <a href="https://predictionio.incubator.apache.org/templates/similarproduct/quickstart/">Similar Product Template</a>. Similar Product Template is a great choice if you want to make recommendations based on immediate user activities or for new users with limited history. It uses MLLib Alternating Least Squares (ALS) recommendation algorithm, a <a href="http://en.wikipedia.org/wiki/Recommender_system#Collaborative_filtering">Collaborative filtering</a> (CF) algorithm commonly used for recommender systems. These techniques aim to fill in the missing entries of a user-item association matrix. Users and pr
 oducts are described by a small set of latent factors that can be used to predict missing entries. A layman&#39;s interpretation of Collaborative Filtering is &quot;People who like this comic, also like these comics.&quot;</p><p>All the code and data is on GitHub at: <a href="https://github.com/PredictionIO/Demo-Tapster">github.com/PredictionIO/Demo-Tapster</a>.</p><h3 id='data' class='header-anchors'>Data</h3><p>The source of the data is from <a href="http://tapastic.com/">Tapastic</a>. You can find the data files <a href="https://github.com/PredictionIO/Demo-Tapster/tree/master/data">here</a>.</p><p>The data structure looks like this:</p><p><a href="https://github.com/PredictionIO/Demo-Tapster/blob/master/data/episode_list.csv">Episode List</a> <code>data/episode_list.csv</code></p><p><strong>Fields:</strong> episodeId | episodeTitle | episodeCategories | episodeUrl | episodeImageUrls</p><p>1,000 rows. Each row represents one episode.</p><p><a href="https://github.com/PredictionIO
 /Demo-Tapster/blob/master/data/user_list.csv">User Like Event List</a> <code>data/user_list.csv</code></p><p><strong>Fields:</strong> userId | episodeId | likedTimestamp</p><p>192,587 rows. Each row represents one user like for the given episode.</p><p>The tutorial has four major steps:</p> <ul> <li>Demo application setup</li> <li>PredictionIO installation and setup</li> <li>Import data into database and PredictionIO</li> <li>Integrate demo application with PredictionIO</li> </ul> <h2 id='tapster-demo-application' class='header-anchors'>Tapster Demo Application</h2><p>The demo application is built using Rails.</p><p>You can clone the existing application with:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span>git clone  https://github.com/PredictionIO/Demo-Tapster.git
+<span class="gp">$ </span><span class="nb">cd </span>Demo-Tapster
+<span class="gp">$ </span>bundle install
+</pre></td></tr></tbody></table> </div> <p>You will need to edit <code>config/database.yml</code> to match your local database settings. We have provided some sensible defaults for PostgreSQL, MySQL, and SQLite.</p><p>Setup the database with:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span>rake db:create
+<span class="gp">$ </span>rake db:migrate
+</pre></td></tr></tbody></table> </div> <p>At this point, you should have the demo application ready but with an empty database. Lets import the episodes data into our database. We will do this with: <code>$ rake import:episodes</code>. An &quot;Episode&quot; is a single <a href="http://en.wikipedia.org/wiki/Comic_strip">comic strip</a>.</p><p><a href="https://github.com/PredictionIO/Demo-Tapster/blob/master/lib/tasks/import/episodes.rake">View on GitHub</a></p><p>This script is pretty simple. It loops through the CSV file and creates a new episode for each line in the file in our local database.</p><p>You can start the app and point your browser to <a href="http://localhost:3000">http://localhost:3000</a></p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1</pre></td><td class="code"><pre><span class="nv">$rails</span> server
+</pre></td></tr></tbody></table> </div> <p><img alt="Rails Server" src="/images/demo/tapster/rails-server-997d690e.png"/></p><h2 id='apache-predictionio-(incubating)-setup' class='header-anchors'>Apache PredictionIO (incubating) Setup</h2><h3 id='install-apache-predictionio-(incubating)' class='header-anchors'>Install Apache PredictionIO (incubating)</h3><p>Follow the installation instructions <a href="http://predictionio.incubator.apache.org/install/">here</a> or simply run:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1</pre></td><td class="code"><pre><span class="gp">$ </span>bash -c <span class="s2">"</span><span class="k">$(</span>curl -s https://raw.githubusercontent.com/apache/incubator-predictionio/master/bin/install.sh<span class="k">)</span><span class="s2">"</span>
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Install" src="/images/demo/tapster/pio-install-2d870aed.png"/></p><h3 id='create-a-new-app' class='header-anchors'>Create a New App</h3><p>You will need to create a new app on Apache PredictionIO (incubating) to house the Tapster demo. You can do this with:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1</pre></td><td class="code"><pre><span class="gp">$ </span>pio app new tapster
+</pre></td></tr></tbody></table> </div> <p>Take note of the App ID and Access Key.</p><p><img alt="PIO App New" src="/images/demo/tapster/pio-app-new-5a8ae503.png"/></p><h3 id='setup-engine' class='header-anchors'>Setup Engine</h3><p>We are going to copy the Similar Product Template into the PIO directory.</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span><span class="nb">cd </span>PredictionIO
+<span class="gp">$ </span>git clone https://github.com/apache/incubator-predictionio-template-similar-product.git tapster-episode-similar
+</pre></td></tr></tbody></table> </div> <p>Next we are going to update the App ID in the ‘engine.json’ file to match the App ID we just created.</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>nano engine.json
+<span class="gp">$ </span><span class="nb">cd</span> ..
+</pre></td></tr></tbody></table> </div> <p><img alt="Engine Setup" src="/images/demo/tapster/pio-engine-setup-88e25cc0.png"/></p><h3 id='modify--engine-template' class='header-anchors'>Modify Engine Template</h3><p>By the default, the engine template reads the “view” events. We can easily to change it to read “like” events.</p> <p>Modify <code>readTraining()</code> in DataSource.scala:</p><div class="highlight scala"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36</pre></td><td class="code"><pre>
+  <span class="k">override</span>
+  <span class="k">def</span> <span class="n">readTraining</span><span class="o">(</span><span class="n">sc</span><span class="k">:</span> <span class="kt">SparkContext</span><span class="o">)</span><span class="k">:</span> <span class="kt">TrainingData</span> <span class="o">=</span> <span class="o">{</span>
+
+    <span class="o">...</span>
+
+    <span class="k">val</span> <span class="n">viewEventsRDD</span><span class="k">:</span> <span class="kt">RDD</span><span class="o">[</span><span class="kt">ViewEvent</span><span class="o">]</span> <span class="k">=</span> <span class="n">eventsDb</span><span class="o">.</span><span class="n">find</span><span class="o">(</span>
+      <span class="n">appId</span> <span class="k">=</span> <span class="n">dsp</span><span class="o">.</span><span class="n">appId</span><span class="o">,</span>
+      <span class="n">entityType</span> <span class="k">=</span> <span class="nc">Some</span><span class="o">(</span><span class="s">"user"</span><span class="o">),</span>
+      <span class="n">eventNames</span> <span class="k">=</span> <span class="nc">Some</span><span class="o">(</span><span class="nc">List</span><span class="o">(</span><span class="s">"like"</span><span class="o">)),</span> <span class="c1">// MODIFIED
+</span>      <span class="c1">// targetEntityType is optional field of an event.
+</span>      <span class="n">targetEntityType</span> <span class="k">=</span> <span class="nc">Some</span><span class="o">(</span><span class="nc">Some</span><span class="o">(</span><span class="s">"item"</span><span class="o">)))(</span><span class="n">sc</span><span class="o">)</span>
+      <span class="c1">// eventsDb.find() returns RDD[Event]
+</span>      <span class="o">.</span><span class="n">map</span> <span class="o">{</span> <span class="n">event</span> <span class="k">=&gt;</span>
+        <span class="k">val</span> <span class="n">viewEvent</span> <span class="k">=</span> <span class="k">try</span> <span class="o">{</span>
+          <span class="n">event</span><span class="o">.</span><span class="n">event</span> <span class="k">match</span> <span class="o">{</span>
+            <span class="k">case</span> <span class="s">"like"</span> <span class="k">=&gt;</span> <span class="nc">ViewEvent</span><span class="o">(</span> <span class="c1">// MODIFIED
+</span>              <span class="n">user</span> <span class="k">=</span> <span class="n">event</span><span class="o">.</span><span class="n">entityId</span><span class="o">,</span>
+              <span class="n">item</span> <span class="k">=</span> <span class="n">event</span><span class="o">.</span><span class="n">targetEntityId</span><span class="o">.</span><span class="n">get</span><span class="o">,</span>
+              <span class="n">t</span> <span class="k">=</span> <span class="n">event</span><span class="o">.</span><span class="n">eventTime</span><span class="o">.</span><span class="n">getMillis</span><span class="o">)</span>
+            <span class="k">case</span> <span class="k">_</span> <span class="k">=&gt;</span> <span class="k">throw</span> <span class="k">new</span> <span class="nc">Exception</span><span class="o">(</span><span class="n">s</span><span class="s">"Unexpected event ${event} is read."</span><span class="o">)</span>
+          <span class="o">}</span>
+        <span class="o">}</span> <span class="k">catch</span> <span class="o">{</span>
+          <span class="k">case</span> <span class="n">e</span><span class="k">:</span> <span class="kt">Exception</span> <span class="o">=&gt;</span> <span class="o">{</span>
+            <span class="n">logger</span><span class="o">.</span><span class="n">error</span><span class="o">(</span><span class="n">s</span><span class="s">"Cannot convert ${event} to ViewEvent."</span> <span class="o">+</span>
+              <span class="n">s</span><span class="s">" Exception: ${e}."</span><span class="o">)</span>
+            <span class="k">throw</span> <span class="n">e</span>
+          <span class="o">}</span>
+        <span class="o">}</span>
+        <span class="n">viewEvent</span>
+      <span class="o">}</span>
+
+    <span class="o">...</span>
+  <span class="o">}</span>
+<span class="o">}</span>
+
+</pre></td></tr></tbody></table> </div> <p>Finally to build the engine we will run:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>pio build
+<span class="gp">$ </span><span class="nb">cd</span> ..
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Build" src="/images/demo/tapster/pio-build-e6eb1d7c.png"/></p><h2 id='import-data' class='header-anchors'>Import Data</h2><p>Once everything is installed, start the event server by running: <code>$ pio eventserver</code></p><p><img alt="Event Server" src="/images/demo/tapster/pio-eventserver-88889ec0.png"/></p><div class="alert-message info"><p>You can check the status of Apache PredictionIO (incubating) at any time by running: <code>$ pio status</code></p></div><p>ALERT: If your laptop goes to sleep you might manually need to restart HBase with:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3</pre></td><td class="code"><pre><span class="gp">$ </span><span class="nb">cd </span>PredictionIO/venders/hbase-0.98.6/bin
+<span class="gp">$ </span>./stop-hbase.sh
+<span class="gp">$ </span>./start-hbase.sh
+</pre></td></tr></tbody></table> </div> <p>The key event we are importing into Apache PredictionIO (incubating) event server is the &quot;Like&quot; event (for example, user X likes episode Y).</p><p>We will send this data to Apache PredictionIO (incubating) by executing <code>$ rake import:predictionio</code> command.</p><p><a href="https://github.com/PredictionIO/Demo-Tapster/blob/master/lib/tasks/import/predictionio.rake">View on GitHub</a></p><p>This script is a little more complex. First we need to connect to the Event Server.</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1</pre></td><td class="code"><pre>client <span class="o">=</span> PredictionIO::EventClient.new<span class="o">(</span>ENV[<span class="s1">'PIO_ACCESS_KEY'</span><span class="o">]</span>, ENV[<span class="s1">'PIO_EVENT_SERVER_URL'</span><span class="o">]</span>, THREADS<span class="o">)</span>
+</pre></td></tr></tbody></table> </div> <p>You will need to create the environmental variables <code>PIO_ACCESS_KEY</code> and <code>PIO_EVENT_SERVER_URL</code>. The default Event Server URL is: <a href="http://localhost:7070">http://localhost:7070</a>.</p><div class="alert-message info"><p>If you forget your <strong>Access Key</strong> you can always run: <code>$ pio app list</code></p></div><p>You can set these values in the <code>.env</code> file located in the application root directory and it will be automatically loaded into your environment each time Rails is run.</p><p>The next part of the script loops through each line of the <code>data/user_list.csv</code> file and returns an array of unique user and episode IDs. Once we have those we can send the data to Apache PredictionIO (incubating) like this.</p><p>First the users:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5</pre></td><td class="code"><pre>user_ids.each_with_index <span class="k">do</span> |id, i|
+  <span class="c"># Send unique user IDs to PredictionIO.</span>
+  client.aset_user<span class="o">(</span>id<span class="o">)</span>
+  puts <span class="s2">"Sent user ID #{id} to PredictionIO. Action #{i + 1} of #{user_count}"</span>
+end
+</pre></td></tr></tbody></table> </div> <p>And now the episodes:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17</pre></td><td class="code"><pre>episode_ids.each_with_index <span class="k">do</span> |id, i|
+  <span class="c"># Load episode from database - we will need this to include the categories!</span>
+  episode <span class="o">=</span> Episode.where<span class="o">(</span>episode_id: id<span class="o">)</span>.take
+
+  <span class="k">if </span>episode
+    <span class="c"># Send unique episode IDs to PredictionIO.</span>
+    client.acreate_event<span class="o">(</span>
+      <span class="s1">'$set'</span>,
+      <span class="s1">'item'</span>,
+      id,
+      properties: <span class="o">{</span> categories: episode.categories <span class="o">}</span>
+    <span class="o">)</span>
+    puts <span class="s2">"Sent episode ID #{id} to PredictionIO. Action #{i + 1} of #{episode_count}"</span>
+  <span class="k">else
+    </span>puts <span class="s2">"Episode ID #{id} not found in database! Skipping!"</span>.color<span class="o">(</span>:red<span class="o">)</span>
+  end
+end
+</pre></td></tr></tbody></table> </div> <p>Finally we loop through the <code>data/user_list.csv</code> file a final time to send the like events:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14</pre></td><td class="code"><pre>CSV.foreach<span class="o">(</span>USER_LIST, headers: <span class="nb">true</span><span class="o">)</span> <span class="k">do</span> |row|
+  user_id <span class="o">=</span> row[0] <span class="c"># userId</span>
+  episode_id <span class="o">=</span> row[1] <span class="c"># episodeId</span>
+
+  <span class="c"># Send like to PredictionIO.</span>
+  client.acreate_event<span class="o">(</span>
+    <span class="s1">'like'</span>,
+    <span class="s1">'user'</span>,
+    user_id,
+    <span class="o">{</span> <span class="s1">'targetEntityType'</span> <span class="o">=</span>&gt; <span class="s1">'item'</span>, <span class="s1">'targetEntityId'</span> <span class="o">=</span>&gt; episode_id <span class="o">}</span>
+  <span class="o">)</span>
+
+  puts <span class="s2">"Sent user ID #{user_id} liked episode ID #{episode_id} to PredictionIO. Action #{</span><span class="nv">$INPUT_LINE_NUMBER</span><span class="s2">} of #{line_count}."</span>
+end
+</pre></td></tr></tbody></table> </div> <p>In total the script takes about 4 minutes to run on a basic laptop. At this point all the data is now imported to Apache PredictionIO (incubating).</p><p><img alt="Import" src="/images/demo/tapster/pio-import-predictionio-1ecd11fd.png"/></p><h3 id='engine-training' class='header-anchors'>Engine Training</h3><p>We train the engine with the following command:</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2</pre></td><td class="code"><pre><span class="gp">$ </span><span class="nb">cd </span>tapster-episode-similar
+<span class="gp">$ </span>pio train -- --driver-memory 4g
+</pre></td></tr></tbody></table> </div> <p><img alt="PIO Train" src="/images/demo/tapster/pio-train-7edffad4.png"/></p><p>Using the --driver-memory option to limit the memory used by Apache PredictionIO (incubating). Without this Apache PredictionIO (incubating) can consume too much memory leading to a crash. You can adjust the 4g up or down depending on your system specs.</p><p>You can set up a job to periodically retrain the engine so the model is updated with the latest dataset.</p><h3 id='deploy-model' class='header-anchors'>Deploy Model</h3><p>You can deploy the model with: <code>$ pio deploy</code> from the <code>tapster-episode-similar</code> directory.</p><p>At this point, you have an demo app with data and a Apache PredictionIO (incubating) server with a trained model all setup. Next, we will connect the two so you can log the live interaction (likes) events into Apache PredictionIO (incubating) event server and query the engine server for recommendation.</p><h2 id='connect
 -demo-app-with-apache-predictionio-(incubating)' class='header-anchors'>Connect Demo app with Apache PredictionIO (incubating)</h2><h3 id='overview' class='header-anchors'>Overview</h3><p>On a high level the application keeps a record of each like and dislike. It uses jQuery to send an array of both likes and dislikes to the server on each click. The server then queries Apache PredictionIO (incubating) for a similar episode which is relayed to jQuery and displayed to the user.</p><p>Data flow:</p> <ul> <li>The user likes an episode.</li> <li>Tapster sends the &quot;Like&quot; event to Apache PredictionIO (incubating) event server.</li> <li>Tapster queries Apache PredictionIO (incubating) engine with all the episodes the user has rated (likes and dislikes) in this session.</li> <li>Apache PredictionIO (incubating) returns 1 recommended episode.</li> </ul> <h3 id='javascript' class='header-anchors'>JavaScript</h3><p>All the important code lives in <code>app/assets/javascripts/applicat
 ion.js</code> <a href="https://github.com/PredictionIO/Demo-Tapster/blob/master/app/assets/javascripts/application.js">View on GitHub</a></p><p>Most of this file is just handlers for click things, displaying the loading dialog and other such things.</p><p>The most important function is to query the Rails server for results from Apache PredictionIO (incubating).</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14</pre></td><td class="code"><pre>// Query the server <span class="k">for </span>a comic based on previous likes. See episodes#query.
+queryPIO: <span class="k">function</span><span class="o">()</span> <span class="o">{</span>
+  var _this <span class="o">=</span> this; // For closure.
+  <span class="nv">$.</span>ajax<span class="o">({</span>
+    url: <span class="s1">'/episodes/query'</span>,
+    <span class="nb">type</span>: <span class="s1">'POST'</span>,
+    data: <span class="o">{</span>
+      likes: JSON.stringify<span class="o">(</span>_this.likes<span class="o">)</span>,
+      dislikes: JSON.stringify<span class="o">(</span>_this.dislikes<span class="o">)</span>,
+    <span class="o">}</span>
+  <span class="o">})</span>.done<span class="o">(</span><span class="k">function</span><span class="o">(</span>data<span class="o">)</span> <span class="o">{</span>
+    _this.setComic<span class="o">(</span>data<span class="o">)</span>;
+  <span class="o">})</span>;
+<span class="o">}</span>
+</pre></td></tr></tbody></table> </div> <h3 id='rails' class='header-anchors'>Rails</h3><p>On the Rails side all the fun things happen in the episodes controller located at: <code>app/controllers/episodes_controller</code> <a href="https://github.com/PredictionIO/Demo-Tapster/blob/master/app/controllers/episodes_controller.rb">View on GitHub</a>.</p><div class="highlight shell"><table style="border-spacing: 0"><tbody><tr><td class="gutter gl" style="text-align: right"><pre class="lineno">1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32</pre></td><td class="code"><pre>def query
+  <span class="c"># Create PredictionIO client.</span>
+  client <span class="o">=</span> PredictionIO::EngineClient.new<span class="o">(</span>ENV[<span class="s1">'PIO_ENGINE_URL'</span><span class="o">])</span>
+
+  <span class="c"># Get posted likes and dislikes.</span>
+  likes <span class="o">=</span> ActiveSupport::JSON.decode<span class="o">(</span>params[:likes]<span class="o">)</span>
+  dislikes <span class="o">=</span> ActiveSupport::JSON.decode<span class="o">(</span>params[:dislikes]<span class="o">)</span>
+
+  <span class="k">if </span>likes.empty?
+    <span class="c"># We can't query PredictionIO with no likes so</span>
+    <span class="c"># we will return a random comic instead.</span>
+    @episode <span class="o">=</span> random_episode
+
+    render json: @episode
+    <span class="k">return
+  </span>end
+
+  <span class="c"># Query PredictionIO.</span>
+  <span class="c"># Here we black list the disliked items so they are not shown again!</span>
+  response <span class="o">=</span> client.send_query<span class="o">(</span>items: likes, blackList: dislikes,  num: 1<span class="o">)</span>
+
+  <span class="c"># With a real application you would want to do some</span>
+  <span class="c"># better sanity checking of the response here!</span>
+
+  <span class="c"># Get ID of response.</span>
+  id <span class="o">=</span> response[<span class="s1">'itemScores'</span><span class="o">][</span>0][<span class="s1">'item'</span><span class="o">]</span>
+
+  <span class="c"># Find episode in database.</span>
+  @episode <span class="o">=</span> Episode.where<span class="o">(</span>episode_id: id<span class="o">)</span>.take
+
+  render json: @episode
+end
+</pre></td></tr></tbody></table> </div> <p>On the first line we make a connection to Apache PredictionIO (incubating). You will need to set the <code>PIO_ENGINE_URL</code>. This can be done in the <code>.env</code> file. The default URL is: <a href="http://localhost:8000">http://localhost:8000</a>.</p><p>Next we decode the JSON sent from the browser.</p><p>After that we check to see if the user has liked anything yet. If not we just return a random episode.</p><p>If the user has likes then we can send that data to Apache PredictionIO (incubating) event server.</p><p>We also blacklist the dislikes so that they are not returned.</p><p>With our response from Apache PredictionIO (incubating) it’s just a matter of looking it up in the database and rendering that object as JSON.</p><p>Once the response is sent to the browser JavaScript is used to replace the existing comic and hide the loading message.</p><p>Thats it. You’re done! If Ruby is not your language of choice check out our o
 ther <a href="http://predictionio.incubator.apache.org/sdk/">SDKs</a> and remember you can always interact with the Event Server though it’s native JSON API.</p><h2 id='links' class='header-anchors'>Links</h2><p>Source code is on GitHub at: <a href="https://github.com/PredictionIO/Demo-Tapster">github.com/PredictionIO/Demo-Tapster</a></p><h2 id='conclusion' class='header-anchors'>Conclusion</h2><p>Love this tutorial and Apache PredictionIO (incubating)? Both are open source (Apache 2 License). <a href="https://github.com/PredictionIO/Demo-Tapster">Fork</a> this demo and build upon it. If you produce something cool shoot us an email and we will link to it from here.</p><p>Found a typo? Think something should be explained better? This tutorial (and all our other documenation) live in the main repo <a href="https://github.com/apache/incubator-predictionio/blob/livedoc/docs/manual/source/demo/tapster.html.md">here</a>. Our documentation is in the <code>livedoc</code> branch. Find out 
 how to contribute documentation at <a href="http://predictionio.incubator.apache.org/community/contribute-documentation/">http://predictionio.incubator.apache.org/community/contribute-documentation/</a>].</p><p>We &hearts; pull requests!</p></div></div></div></div><footer><div class="container"><div class="seperator"></div><div class="row"><div class="col-md-6 footer-link-column"><div class="footer-link-column-row"><h4>Community</h4><ul><li><a href="//predictionio.incubator.apache.org/install/" target="blank">Download</a></li><li><a href="//predictionio.incubator.apache.org/" target="blank">Docs</a></li><li><a href="//github.com/apache/incubator-predictionio" target="blank">GitHub</a></li><li><a href="mailto:user-subscribe@predictionio.incubator.apache.org" target="blank">Subscribe to User Mailing List</a></li><li><a href="//stackoverflow.com/questions/tagged/predictionio" target="blank">Stackoverflow</a></li></ul></div></div><div class="col-md-6 footer-link-column"><div class="foot
 er-link-column-row"><h4>Contribute</h4><ul><li><a href="//predictionio.incubator.apache.org/community/contribute-code/" target="blank">Contribute</a></li><li><a href="//github.com/apache/incubator-predictionio" target="blank">Source Code</a></li><li><a href="//issues.apache.org/jira/browse/PIO" target="blank">Bug Tracker</a></li><li><a href="mailto:dev-subscribe@predictionio.incubator.apache.org" target="blank">Subscribe to Development Mailing List</a></li></ul></div></div></div><div class="row"><div class="col-md-12 footer-link-column"><a class="pull-right" href="http://incubator.apache.org/projects/predictionio.html"><img alt="Apache Incubator" src="/images/logos/apache_incubator-6954bd16.png"/></a><span>Apache PredictionIO is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making pr
 ocess have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.</span></div></div></div><div id="footer-bottom"><div class="container"><div class="row"><div class="col-md-12"><div id="footer-logo-wrapper"><img alt="PredictionIO" src="/images/logos/logo-white-d1e9c6e6.png"/></div><div id="social-icons-wrapper"><a class="github-button" href="https://github.com/apache/incubator-predictionio" data-style="mega" data-count-href="/apache/incubator-predictionio/stargazers" data-count-api="/repos/apache/incubator-predictionio#stargazers_count" data-count-aria-label="# stargazers on GitHub" aria-label="Star apache/incubator-predictionio on GitHub">Star</a> <a class="github-button" href="https://github.com/apache/incubator-predictionio/fork" data-icon="octicon-git-branch" data-style="mega" data-count-hr
 ef="/apache/incubator-predictionio/network" data-count-api="/repos/apache/incubator-predictionio#forks_count" data-count-aria-label="# forks on GitHub" aria-label="Fork apache/incubator-predictionio on GitHub">Fork</a> <script id="github-bjs" async="" defer="" src="https://buttons.github.io/buttons.js"></script><a href="https://twitter.com/predictionio" target="blank"><img alt="PredictionIO on Twitter" src="/images/icons/twitter-ea9dc152.png"/></a> <a href="https://www.facebook.com/predictionio" target="blank"><img alt="PredictionIO on Facebook" src="/images/icons/facebook-5c57939c.png"/></a> </div></div></div></div></div></footer></div><script>(function(w,d,t,u,n,s,e){w['SwiftypeObject']=n;w[n]=w[n]||function(){
+(w[n].q=w[n].q||[]).push(arguments);};s=d.createElement(t);
+e=d.getElementsByTagName(t)[0];s.async=1;s.src=u;e.parentNode.insertBefore(s,e);
+})(window,document,'script','//s.swiftypecdn.com/install/v1/st.js','_st');
+
+_st('install','HaUfpXXV87xoB_zzCQ45');</script><script src="/javascripts/application-a6acb1f5.js"></script></body></html>
\ No newline at end of file

http://git-wip-us.apache.org/repos/asf/incubator-predictionio-site/blob/32eb5edf/demo/tapster/index.html.gz
----------------------------------------------------------------------
diff --git a/demo/tapster/index.html.gz b/demo/tapster/index.html.gz
new file mode 100644
index 0000000..13cd06c
Binary files /dev/null and b/demo/tapster/index.html.gz differ


Mime
View raw message