mxnet-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [incubator-mxnet] xidulu commented on a change in pull request #15858: [Numpy] Numpy behavior random.uniform()
Date Tue, 13 Aug 2019 03:05:44 GMT
xidulu commented on a change in pull request #15858: [Numpy] Numpy behavior random.uniform()
URL: https://github.com/apache/incubator-mxnet/pull/15858#discussion_r313204512
 
 

 ##########
 File path: src/operator/numpy/random/dist_common.h
 ##########
 @@ -0,0 +1,180 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ *  Copyright (c) 2015 by Contributors
+ * \file etwoparams_dist_common.h
+ * \brief Function definition of common functions for distributions
+ * \with two parameters.
+ */
+
+#ifndef MXNET_OPERATOR_NUMPY_RANDOM_DIST_COMMON_H_
+#define MXNET_OPERATOR_NUMPY_RANDOM_DIST_COMMON_H_
+
+#include <mxnet/operator_util.h>
+#include <mshadow/base.h>
+#include <vector>
+#include <string>
+#include <algorithm>
+#include "../../elemwise_op_common.h"
+#include "../../tensor/elemwise_binary_broadcast_op.h"
+#include "../../mshadow_op.h"
+#include "../../mxnet_op.h"
+#include "../../operator_common.h"
+
+namespace mxnet {
+namespace op {
+
+inline int FillShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape,
+                     const mxnet::TShape &oshape, mxnet::TShape *new_lshape,
+                     mxnet::TShape *new_rshape, mxnet::TShape *new_oshape) {
+  const int odim = std::max(oshape.ndim(), broadcast::MAX_DIM);
+  *new_lshape = mxnet::TShape(odim, 1);
+  *new_rshape = mxnet::TShape(odim, 1);
+  *new_oshape = mxnet::TShape(odim, 1);
+  int bl = oshape.ndim() - lshape.ndim();
+  int br = oshape.ndim() - rshape.ndim();
+  int j = 0, lprod = 1, rprod = 1, oprod = 1;
+  for (int i = 0; i < oshape.ndim(); ++i) {
+    int l = 1;
+    int r = 1;
+    int o = oshape[i];
+    if (i >= bl)  l = lshape[i - bl];
+    if (i >= br)  r = rshape[i - br];
+    if ((lprod != rprod || lprod != oprod || l != r || l != o) &&
+        (lprod * l > 1 || rprod * r > 1 || oprod * o > 1)) {
+      (*new_lshape)[j] = lprod;
+      (*new_rshape)[j] = rprod;
+      (*new_oshape)[j] = oprod;
+      lprod = rprod = oprod = 1; ++j;
+    }
+    lprod *= l;
+    rprod *= r;
+    oprod *= o;
+  }
+  if (lprod > 1 || rprod > 1 || oprod > 1) {
+    (*new_lshape)[j] = lprod;
+    (*new_rshape)[j] = rprod;
+    (*new_oshape)[j] = oprod;
+    ++j;
+  }
+  if (j <= broadcast::MAX_DIM) {
+    BROADCAST_NDIM_SWITCH(j, NDim, {
+      new_lshape->assign(new_lshape->begin(), new_lshape->begin() + NDim);
+      new_rshape->assign(new_rshape->begin(), new_rshape->begin() + NDim);
+      new_oshape->assign(new_oshape->begin(), new_oshape->begin() + NDim);
+    });
+  } else {
+    LOG(FATAL) << "Too many broadcast dimensions with operands " << lshape <<
" " << rshape;
+  }
+  return j;
+}
+
+inline void CheckBroadcastable(const mxnet::TShape &from, const mxnet::TShape &to)
{
+  const int bl = to.ndim() - from.ndim();
+  const int br = 0;
+  for (int i = 0; i < to.ndim(); ++i) {
+    int l = 1, r = 1;
+    if (i >= bl)
+      l = from[i - bl];
+    if (i >= br)
+      r = to[i - br];
+    if (!mxnet::dim_size_is_known(l) || !mxnet::dim_size_is_known(r))
+      continue;
+    if (l != r) {
+      // Make it compatible with NumPy.
+      // For example, (2, 3) cannot broadcast to (2, 0, 3), but (1, 3) can
+      // broadcast to (2, 0, 3).
+      CHECK(l == 1 || r == 1)
+          << "operands could not be broadcast together with shapes " << from
+          << " " << to;
+    }
+  }
+}
+
+inline void InferBroadcastShape(const mxnet::TShape &lhs, const mxnet::TShape &rhs,
+                         mxnet::TShape* out_ptr) {
+  mxnet::TShape& out = (*out_ptr);
+  const int bl = out.ndim() - lhs.ndim();
+  const int br = out.ndim() - rhs.ndim();
+  for (int i = 0; i < out.ndim(); ++i) {
+    int l = 1, r = 1;
+    if (i >= bl)
+      l = lhs[i - bl];
+    if (i >= br)
+      r = rhs[i - br];
+    if (!mxnet::dim_size_is_known(l) || !mxnet::dim_size_is_known(r))
+      continue;
+    if (l != r) {
+      // Make it compatible with NumPy.
+      // For example, (2, 3) cannot broadcast to (2, 0, 3), but (1, 3) can
+      // broadcast to (2, 0, 3).
+      CHECK(l == 1 || r == 1)
+          << "operands could not be broadcast together with shapes " << lhs
+          << " " << rhs;
+      out[i] = (l == 1 ? r : l);
+    } else {
+      out[i] = l;
+    }
+  }
+}
+
+template<typename DistParam>
+inline bool TwoparamsDistOpShape(const nnvm::NodeAttrs &attrs,
+                                std::vector<TShape> *in_attrs,
+                                std::vector<TShape> *out_attrs) {
+  const DistParam &param = nnvm::get<DistParam>(attrs.parsed);
+  CHECK_EQ(out_attrs->size(), 1U);
+  if (param.size.has_value()) {
+    // Size declared.
+    std::vector<dim_t> oshape_vec;
+    const mxnet::Tuple<int> &size = param.size.value();
+    for (int i = 0; i < size.ndim(); ++i) {
+      oshape_vec.emplace_back(size[i]);
+    }
+    SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(oshape_vec));
+    for (size_t input_idx = 0; input_idx < in_attrs->size(); input_idx++) {
+      CheckBroadcastable((*in_attrs)[input_idx], (*out_attrs)[0]);
+    }
+  } else {
+    // Size undeclared.
+    if (in_attrs->size() == 2U) {
+      // Both params from ndarray.
+      mxnet::TShape& low = (*in_attrs)[0];
+      mxnet::TShape& high = (*in_attrs)[1];
+      mxnet::TShape out(std::max(low.ndim(), high.ndim()), -1);
+      InferBroadcastShape(low, high, &out);
+      SHAPE_ASSIGN_CHECK(*out_attrs, 0, out);
+    } else if (in_attrs->size() == 1U) {
+      // One param from ndarray.
+      SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0))
+    } else if (in_attrs->size() == 0) {
+    // Two scalar case.
+      SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(0, -1))
+      return true;
+    }
+  }
+  return out_attrs->at(0).ndim() != 0U;
+}
+
 
 Review comment:
   done, thx for pointing out!

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services

Mime
View raw message