mxnet-commits mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From GitBox <...@apache.org>
Subject [GitHub] [incubator-mxnet] xidulu commented on a change in pull request #15858: [Numpy] Numpy behavior random.uniform()
Date Tue, 13 Aug 2019 03:05:06 GMT
xidulu commented on a change in pull request #15858: [Numpy] Numpy behavior random.uniform()
URL: https://github.com/apache/incubator-mxnet/pull/15858#discussion_r313204436
 
 

 ##########
 File path: src/operator/numpy/random/np_uniform_op.h
 ##########
 @@ -0,0 +1,218 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *   http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing,
+ * software distributed under the License is distributed on an
+ * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+ * KIND, either express or implied.  See the License for the
+ * specific language governing permissions and limitations
+ * under the License.
+ */
+
+/*!
+ * Copyright (c) 2019 by Contributors
+ * \file np_uniform_op.h
+ * \brief Operator for numpy sampling from uniform distributions
+ */
+#ifndef MXNET_OPERATOR_NUMPY_RANDOM_NP_UNIFORM_OP_H_
+#define MXNET_OPERATOR_NUMPY_RANDOM_NP_UNIFORM_OP_H_
+
+#include <mxnet/operator_util.h>
+#include <mshadow/base.h>
+#include <vector>
+#include <string>
+#include <algorithm>
+#include "./dist_common.h"
+#include "../../elemwise_op_common.h"
+#include "../../tensor/elemwise_binary_broadcast_op.h"
+#include "../../mshadow_op.h"
+#include "../../mxnet_op.h"
+#include "../../operator_common.h"
+
+namespace mxnet {
+namespace op {
+
+struct NumpyUniformParam : public dmlc::Parameter<NumpyUniformParam> {
+  dmlc::optional<float> low;
+  dmlc::optional<float> high;
+  std::string ctx;
+  int dtype;
+  dmlc::optional<mxnet::Tuple<int>> size;
+  DMLC_DECLARE_PARAMETER(NumpyUniformParam) {
+    DMLC_DECLARE_FIELD(low);
+    DMLC_DECLARE_FIELD(high);
+    DMLC_DECLARE_FIELD(size)
+        .set_default(dmlc::optional<mxnet::Tuple<int>>())
+        .describe("Output shape. If the given shape is, "
+                  "e.g., (m, n, k), then m * n * k samples are drawn. "
+                  "Default is None, in which case a single value is returned.");
+    DMLC_DECLARE_FIELD(ctx)
+    .set_default("cpu")
+    .describe("Context of output, in format [cpu|gpu|cpu_pinned](n)."
+              " Only used for imperative calls.");
+    DMLC_DECLARE_FIELD(dtype)
+    .add_enum("float32", mshadow::kFloat32)
+    .add_enum("float64", mshadow::kFloat64)
+    .add_enum("float16", mshadow::kFloat16)
+    .set_default(mshadow::kFloat32)
+    .describe("DType of the output in case this can't be inferred. "
+              "Defaults to float32 if not defined (dtype=None).");
+  }
+};
+
+inline bool NumpyUniformOpType(const nnvm::NodeAttrs &attrs,
+                                   std::vector<int> *in_attrs,
+                                   std::vector<int> *out_attrs) {
+  const NumpyUniformParam &param = nnvm::get<NumpyUniformParam>(attrs.parsed);
+  int otype = param.dtype;
+  if (otype != -1) {
+    (*out_attrs)[0] = otype;
+  } else {
+    (*out_attrs)[0] = mshadow::kFloat32;
+  }
+  return true;
+}
+
+namespace mxnet_op {
+template <int ndim, typename IType, typename OType>
+struct uniform_kernel {
+  MSHADOW_XINLINE static void Map(index_t i,
+                                  const Shape <ndim> &lstride, const Shape <ndim>
&hstride,
+                                  const Shape <ndim> &oshape,
+                                  IType *low, IType *high,
+                                  float *uniform, OType *out) {
+  Shape<ndim> coord = unravel(i, oshape);
+  auto lidx = static_cast<index_t>(dot(coord, lstride));
+  auto hidx = static_cast<index_t>(dot(coord, hstride));
+  IType low_value = low[lidx];
+  IType high_value = high[hidx];
+  out[i] = low_value + uniform[i] * (high_value - low_value);
+  }
+};
+}  // namespace mxnet_op
+
+namespace mxnet_op {
+template <int ndim, typename IType, typename OType>
+struct uniform_one_scalar_kernel {
+  MSHADOW_XINLINE static void Map(index_t i, int scalar_pos,
+                                  const Shape <ndim> &stride,
+                                  const Shape <ndim> &oshape,
+                                  IType *array, float scalar,
+                                  float *uniform, OType *out) {
+  Shape<ndim> coord = unravel(i, oshape);
+  auto idx = static_cast<index_t>(dot(coord, stride));
+  IType low_value;
+  IType high_value;
+  if (scalar_pos == 0) {
+    low_value = scalar;
+    high_value = array[idx];
+  } else {
+    low_value = array[idx];
+    high_value = scalar;
+  }
+  out[i] = low_value + uniform[i] * (high_value - low_value);
+  }
+};
+}  // namespace mxnet_op
+
+namespace mxnet_op {
 
 Review comment:
   fixed!
   thx

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
users@infra.apache.org


With regards,
Apache Git Services

Mime
View raw message