mahout-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From sharath jagannath <sharathjagann...@gmail.com>
Subject Re: Need help: beginner
Date Thu, 03 Feb 2011 01:10:29 GMT
With some effort, I am now able to write a simple KMeans cluster.
But it is writing all the data to the local folder again and not to the
hadoop FS.
Again, I wanted to use Mahout as a jar and build my application which I
could not.
So, now I am adding classes to the example folder within the
mahout-distribution.

Any help/suggestion is much appreciated. I am kinda stuck with this. It is
so frustrating having not able to proceed.
I need suggestion on:
1. packaging mahout as a  jar/suggestion on integrating it with rest of the
application.
2. How to create Vector from my data, my training set will be having a
context\tList<tags|rank>.
3. How to run the driver on the hadoop. I am setting environment variables
(in eclipse) using: properties->run/debug settings->environment->new

Code: (Came with MEAP)

package org.apache.mahout.clustering.syntheticcontrol.kmeans;

import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;



import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.mahout.clustering.WeightedVectorWritable;
import org.apache.mahout.clustering.kmeans.Cluster;
import org.apache.mahout.clustering.kmeans.KMeansClusterer;
import org.apache.mahout.clustering.kmeans.KMeansDriver;
import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;

public class SimpleKMeansCluster {
public static final double[][] points = { {1, 1}, {2, 1}, {1, 2}, {2, 2},
{3, 3}, {8, 8},
{9, 8}, {8, 9}, {9, 9}};
 public static void writePointsToFile(List<Vector> points, String fileName,
FileSystem fs, Configuration conf) throws IOException {
Path path = new Path(fileName);
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
path, LongWritable.class, VectorWritable.class);
long recNum = 0;
VectorWritable vec = new VectorWritable();
for (Vector point : points) {
vec.set(point); writer.append(new LongWritable(recNum++), vec);
}
writer.close();
}
 public static List<Vector> getPoints(double[][] raw) {
List<Vector> points = new ArrayList<Vector>();
for (int i = 0; i < raw.length; i++) {
double[] fr = raw[i];
Vector vec = new RandomAccessSparseVector(fr.length);
vec.assign(fr); points.add(vec);
}
return points;
}
 public static void main (String []args) throws Exception {
int k = 2; List<Vector> vectors = getPoints(points);
File testData = new File("testdata1");
if (!testData.exists()) {
testData.mkdir();
}
 testData = new File("testdata1/points");
if (!testData.exists()) {
testData.mkdir();
}
 Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
writePointsToFile(vectors, "testdata1/points/file1", fs, conf);
Path path = new Path("testdata1/clusters/part-00000");
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf,
path, Text.class, Cluster.class);
 for (int i = 0; i < k; i++) {
Vector vec = vectors.get(i);
Cluster cluster = new Cluster(vec, i, new EuclideanDistanceMeasure());
writer.append(new Text(cluster.getIdentifier()), cluster);
}
writer.close();

KMeansDriver.run(conf, new Path("testdata1/points"),
new Path("testdata1/clusters"), new Path("output"), new
EuclideanDistanceMeasure(), 0.001, 10, true, false);
SequenceFile.Reader reader = new SequenceFile.Reader(fs, new Path("output/"
+ Cluster.CLUSTERED_POINTS_DIR
+ "/part-m-00000"), conf);
IntWritable key = new IntWritable();
WeightedVectorWritable value = new WeightedVectorWritable();
 while (reader.next(key, value)) {
System.out.println(value.toString() + " belongs to cluster " +
key.toString());
} reader.close();
}
}


Thanks,
Sharath


On Wed, Feb 2, 2011 at 2:43 PM, sharath jagannath <
sharathjagannath@gmail.com> wrote:

> I did not pass any argument. I used the default one:
>
>       log.info("Running with default arguments");
>
>       Path output = new Path("output");
>
>       HadoopUtil.overwriteOutput(output);
>
>       new Job().run(new Configuration(), new Path("testdata"), output, newEuclideanDistanceMeasure(),
80, 55, 0.5, 10);
>
>
>
>

Mime
  • Unnamed multipart/alternative (inline, None, 0 bytes)
View raw message